
SLIDES ADAPTED FROM ALEX MARIAKAKIS,
WITH MATERIAL FROM KRYSTA YOUSOUFIAN, MIKE ERNST, KELLEN DONOHUE

Section 5:
HW6 and Interfaces



How is Homework 5 going?



Agenda
• Reminders
• HW 5 due tomorrow night (4/27)
• Midterm on Monday (4/30)

• Breadth-first search (BFS)
• Interfaces
• Parsing Marvel Data



Reminders:
Expensive CheckReps are BAD

(at least when assignments are turned in, but can be 
useful for finding hard-to-discover problems – so need to 
be able to control expensive checks)

Debug flags are GOOD
(or enums to indicate depth of debug)



Don’t forget your CheckReps!



Graphs

A B

C D

E

Can I reach B 
from A?



Breadth-First Search (BFS)

◦ Often used for discovering connectivity
◦ Calculates the shortest path if and only if all edges have same 

positive or no weight
◦ Depth-first search (DFS) is commonly mentioned with BFS
◦ BFS looks “wide”, DFS looks “deep”
◦ DFS can also be used for discovery, but not the shortest path



BFS Pseudocode

put start node in a queue
while (queue is not empty):

pop node N off queue
mark node N as visited
if (N is goal):

return true
else:

for each node O that is child of N:
if O is not marked visit
push O onto queue

return false



Breadth-First Search

START: Starting at A
Q: <A> Goal: Fully explore
Pop: A, Q: <>
Q: <B, C>
Pop: B, Q: <C>
Q: <C>
Pop: C, Q: <C>
Q: <>
DONE

A

B C



Breadth-First Search with Cycle

START: Starting at A
Q: <A> Goal: Fully Explore
Pop: A, Q: <>
Q: <B>
Pop: B, Q: <>
Q: <C>
Pop: C, Q: <>
Q: <A>
NEVER DONE

A

B C



BFS Pseudocode

put start node in a queue
while (queue is not empty):

pop node N off queue
mark node N as visited
if (N is goal):

return true
else:

for each node O that is child of N:
if O is not marked visited:

push O onto queue
return false

Mark the node 
as visited!



Breadth-First Search

Q: <>

A
B

C D

E

Problem: Find everything reachable from A



Breadth-First Search

Q: <>
Q: <A>

A

C D

E

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>

A

E

DC

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>

A

C

E

D

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>

A

C D

E

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>

A

C D

E

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>
Q: <D, E>

A

C D

E

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>
Q: <D, E>
Q: <E>

A

C D

E

B



Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>
Q: <D, E>
Q: <E>
DONE

A

C D

E

B



Shortest Paths with BFS

Destination Path Cost
A <B,A> 1
B <B> 0
C <B,A,C> 2
D
E

From Node B

A

C D

E

1

1

11

1

1

Shortest path to D? to E?
What are the costs?

B
1



Shortest Paths with BFS

Destination Path Cost
A <B,A> 1
B <B> 0
C <B,A,C> 2
D <B,D> 1
E <B,D,E> 2

From Node B

A

C D

E

1

1

11

1

1

Shortest path to D? to E?
What are the costs?

B
1



Shortest Paths with Weights

A

C D

E

Destination Path Cost
A <B,A> 2
B <B> 0
C <B,A,C> 5
D
E

From Node B

100

2

62

3

100

Weights are not the same!
Are the paths?

B
2



A

C D

E

Destination Path Cost
A <B,A> 2
B <B> 0
C <B,A,C> 5
D <B,A,C,D> 7
E <B,A,C,E> 7

From Node B2

100

2

62

3

100

B

Shortest Paths with Weights



Interfaces



Classes, Interfaces, and Types
● The fundamental unit of programming in 

Java is a class
● Classes can extend other classes and 

implement interfaces
● Interfaces can extend other interfaces



Classes, Objects, and Java
Everything is an instance of a class

◦ Defines data and methods

Every class extends exactly one other class
◦ Object if no explicit superclass
◦ Inherits superclass fields

Every class also defines a type
◦ Foo defines type Foo
◦ Foo inherits all inherited types



Interfaces
Pure type declaration

public interface Comparable { 

int compareTo(Object other);
} 

Can contain:
◦ Method specifications (implicitly public abstract)
◦ Named constants (implicitly public final static)

Does not contain implementation!
Cannot create instances of interfaces



Implementing Interfaces
● A class can implement one or more interfaces

class Kitten implements Pettable, Huggable

● The implementing class and its instances have the interface type(s) 
as well as the class type(s)

● The class must provide or inherit an implementation of all methods 
defined by the interface(s)

◦ Not true for abstract classes



Using Interface Types
● An interface defines a type, so we can declare variables 

and parameters of that type
● A variable with an interface type can refer to an object of 

any class implementing that type

List<String> x = new ArrayList<String>();
void sort(List aList) {…}



Guidelines for Interfaces
● Provide interfaces for significant types and abstractions
● Write code using interface types like Map instead of 

HashMap and TreeMap wherever possible
◦ Allows code to work with different implementations later on

● Both interfaces and classes are appropriate in various 
circumstances



Parsing Marvel Data
● Data is in marvel.tsv

● Will be pushed with hw6
● Each line is in the form:

● "character" "book”
● Ex: "CAPTAIN AMERICA" "N 57”

● Parsing is already implemented for you!
● MarvelParser.parseData()
● Returns Map of Character -> List of Books they’re in


