
Section 7:
Midterm
Slides by Vinod Rathnam and Geoffrey Liu

(with material from Alex Mariakakis,
Kellen Donohue, David Mailhot, and Hal Perkins)

Midterm review

Midterm topics
Reasoning about code Subtypes & subclasses

Specification vs. Implementation Exceptions & assertions

Abstract Data Types (ADTs) Identity & equality

Testing

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

{_______________}
z = x + y;
{_______________}
y = z – 3;
{x > y}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

{_______________}
z = x + y;
{x > z – 3}
y = z – 3;
{x > y}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

{x > x + y – 3 => y < 3}
z = x + y;
{x > z – 3}
y = z – 3;
{x > y}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

{_______________}
p = a + b;
{_______________}
q = a - b;
{p + q = 42}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

{_______________}
p = a + b;
{p + a - b = 42}
q = a - b;
{p + q = 42}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

{a + b + a – b = 42 ⇒ a = 21}
p = a + b;
{p + a - b = 42}
q = a - b;
{p + q = 42}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
balance -= amount;

}

Another way to ask the
question:

If the client does not know the
implementation, will the
method do what the client
expects it to do based on the
specification?

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
balance -= amount;

}

does exactly what the spec says

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
balance -= amount;

}

does exactly what the spec says

If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
balance -= amount;

}

does exactly what the spec says

If the client follows the @requires
precondition, the code will execute as expected

✘ Method never throws an exception

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

✘ balance does not always decrease

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

✘ balance does not always decrease

If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

✘ balance does not always decrease

If the client follows the @requires
precondition, the code will execute as expected

✘ Method never throws an exception

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

✘ balance does not always decrease

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

✘ balance does not always decrease

If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

✘ balance does not always decrease

If the client follows the @requires
precondition, the code will execute as expected

✘ Method throws wrong exception for wrong reason

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

✘ balance does not always decrease

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

✘ balance does not always decrease

If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

✘ balance does not always decrease

If the client follows the @requires
precondition, the code will execute as expected

Method does what the spec says

Specifications 2
/**
* An IntPoly is an immutable, integer-valued polynomial
* with integer coefficients. A typical IntPoly value
* is a_0 + a_1*x + a_2*x^2 + ... + a_n*x_n. An IntPoly
* with degree n has coefficent a_n != 0, except that the
* zero polynomial is represented as a polynomial of
* degree 0 and a_0 = 0 in that case.
*/

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

}

Specifications 2
/**
* Return a new IntPoly that is the sum of this and other
* @requires
* @modifies
* @effects
* @return
* @throws
*/

public IntPoly add(IntPoly other)

Specifications 2
/**
* Return a new IntPoly that is the sum of this and other
* @requires other != null
* @modifies none
* @effects none
* @return a new IntPoly representing the sum of this and other
* @throws none
*/

public IntPoly add(IntPoly other)

Specifications 2
/**
* Return a new IntPoly that is the sum of this and other
* @requires other != null
* @modifies none
* @effects none
* @return a new IntPoly representing the sum of this and other
* @throws none
*/

public IntPoly add(IntPoly other)

Note: if you have an instance variable in
@modifies, it better appear in @effects as
well

Note2: this is not the only answer, you could specify
an exception in @throws or specify the output in
@return

Representation invariants
One of your colleagues is worried that this creates a potential representation exposure problem. Another colleague
says there’s no problem since an IntPoly is immutable. Is there a problem? Give a brief justification for your
answer.

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

}

Representation invariants
One of your colleagues is worried that this creates a potential representation exposure problem. Another colleague
says there’s no problem since an IntPoly is immutable. Is there a problem? Give a brief justification for your
answer.

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

}

The return value is a reference to the same coefficient
array stored in the IntPoly and the client code could
alter those coefficients.

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

}

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public int[] getCoeffs() {
int[] copyA = new int[a.length];
for (int i = 0; i < copyA.length; i++) {

copyA[i] = a[i]
}
return copyA

}

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public int[] getCoeffs() {
int[] copyA = new int[a.length];
for (int i = 0; i < copyA.length; i++) {

copyA[i] = a[i]
}
return copyA

}
1. Make a copy
2. Return the copy

Reasoning about code 2
We would like to add a method to this class that evaluates the IntPoly at a particular value x. In other
words, given a value x, the method valueAt(x) should return a0 + a1x + a2x2 + ... + anxn, where a0
through an are the coefficients of this IntPoly.

For this problem, develop an implementation of this method and prove that your implementation is
correct.

(see starter code on next slide)

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{_____}

while (k != n) {

{_____}

xk = xk * x;

{_____}

val = val + a[k+1]*xk;

{_____}

k = k + 1;

{_____}

}

{_____}

return val;

}

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{_____}

xk = xk * x;

{_____}

val = val + a[k+1]*xk;

{_____}

k = k + 1;

{_____}

}

{_____}

return val;

}

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}

while (k != n) {

{inv && k != n}
xk = xk * x;

{_____}

val = val + a[k+1]*xk;

{_____}

k = k + 1;

{_____}

}

{_____}

return val;

}

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}

while (k != n) {

{inv && k != n}

xk = xk * x;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
val = val + a[k+1]*xk;

{_____}

k = k + 1;

{_____}

}

{_____}

return val;

}

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}

while (k != n) {

{inv && k != n}

xk = xk * x;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}

val = val + a[k+1]*xk;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
k = k + 1;

{_____}

}

{_____}

return val;

}

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}

while (k != n) {

{inv && k != n}

xk = xk * x;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}

val = val + a[k+1]*xk;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}

k = k + 1;

{inv}
}

{_____}

return val;

}

Reasoning about code 2
/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}

while (k != n) {

{inv && k != n}

xk = xk * x;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}

val = val + a[k+1]*xk;

{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}

k = k + 1;

{inv}

}

{inv && k = n ⇒ val = a[0] + a[1]*x + ... + a[n]*x^n}
return val;

}

Equality
Suppose we are defining a class StockItem to represent items stocked by an online grocery store. Here
is the start of the class definition, including the class name and instance variables:

public class StockItem {
String name;
String size;
String description;
int quantity;

/* Construct a new StockItem */
public StockItem(...);

}

Equality
A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {

return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an example showing a situation when it fails.

Equality
A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {

return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an example showing a situation when it fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Equality
A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) { // equals is overloaded, not overridden

return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an example showing a situation when it fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Equality
Show how you would fix the equals method so it works properly (StockItems are equal if their
names and sizes are equal)

/** return true if the name and size fields match */

Equality
Show how you would fix the equals method so it works properly (StockItems are equal if their
names and sizes are equal)

/** return true if the name and size fields match */
@Override
public boolean equals(Object o) {

if (!(o instanceof StockItem)) {
return false;

}
StockItem other = (StockItem) o;
return name.equals(other.name) && size.equals(other.size);

}

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode();

2. return name.hashCode() * 17 + size.hashCode();

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); legal

2. return name.hashCode() * 17 + size.hashCode();

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); legal

2. return name.hashCode() * 17 + size.hashCode(); legal

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); legal

2. return name.hashCode() * 17 + size.hashCode(); legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); legal

2. return name.hashCode() * 17 + size.hashCode(); legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity; ✘ illegal!

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); legal

2. return name.hashCode() * 17 + size.hashCode(); legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity; ✘ illegal!

The equals method does
not care about quantity

In #3 and #4 two StockItem objects that were equal could have different
hashcodes, which is invalid

hashCode
Which implementation do you prefer?

public int hashCode() {
return name.hashCode();

}

public int hashCode() {
return name.hashCode()*17 + size.hashCode();

}

hashCode
Which implementation do you prefer?

public int hashCode() {
return name.hashCode();

}

public int hashCode() {
return name.hashCode()*17 + size.hashCode();

}

(ii) will likely do the best job since it takes into account
both the size and name fields. (i) is also legal but it gives
the same hashCode for StockItems that have different
sizes as long as they have the same name, so it doesn’t
differentiate between different StockItems as well as (ii).

Winter 2013 Q7
Suppose we are specifying a method and we have a choice between either requiring a precondition (e.g.,
@requires: n > 0) or specifying that the method throws an exception under some circumstances (e.g.,
@throws IllegalArgumentException if n <= 0).

Assuming that neither version will be significantly more expensive to implement than the other and that we do not
expect the precondition to be violated or the exception to be thrown in normal use, is there any reason to prefer one
of these to the other, and, if so, which one?

Winter 2013 Q7
Suppose we are specifying a method and we have a choice between either requiring a precondition (e.g.,
@requires: n > 0) or specifying that the method throws an exception under some circumstances (e.g.,
@throws IllegalArgumentException if n <= 0).

Assuming that neither version will be significantly more expensive to implement than the other and that we do not
expect the precondition to be violated or the exception to be thrown in normal use, is there any reason to prefer one
of these to the other, and, if so, which one?

It would be better to specify the exception. That reduces the domain of inputs for which the behavior of the
method is unspecified. It also will cause the method to fail fast for incorrect input, which should make the software
more robust – or at least less likely to continue execution with erroneous data.

Winter 2013 Q7
Suppose we are specifying a method and we have a choice between either requiring a precondition (e.g.,
@requires: n > 0) or specifying that the method throws an exception under some circumstances (e.g.,
@throws IllegalArgumentException if n <= 0).

Assuming that neither version will be significantly more expensive to implement than the other and that we do not
expect the precondition to be violated or the exception to be thrown in normal use, is there any reason to prefer one
of these to the other, and, if so, which one?

It would be better to specify the exception. That reduces the domain of inputs for which the behavior of the
method is unspecified. It also will cause the method to fail fast for incorrect input, which should make the software
more robust – or at least less likely to continue execution with erroneous data.

Note: You could just as easily argue the other way. It may be better to specify the precondition because once the
exception is in the specification, it has to stay there because the client may expect it.

Winter 2013 Q8
Suppose we are trying to choose between two possible specifications for a method. One of the specifications S is
stronger than the other specification W, but both include the behavior needed by clients. In practice, should we
always pick the stronger specification S, always pick the weaker one W, or is it possible that either one might be the
suitable choice? Give a brief justification of your answer, including a brief list of the main criteria to be used in
making the decision.

Winter 2013 Q8
Suppose we are trying to choose between two possible specifications for a method. One of the specifications S is
stronger than the other specification W, but both include the behavior needed by clients. In practice, should we
always pick the stronger specification S, always pick the weaker one W, or is it possible that either one might be the
suitable choice? Give a brief justification of your answer, including a brief list of the main criteria to be used in
making the decision.

Neither is necessarily better. What is important is picking a specification that is simple, promotes modularity and
reuse, and can be implemented efficiently.

(Many answers focused narrowly on which would be easier to implement. While that is important – we don’t want
a specification that is impossible to build – it isn’t the main thing that determines whether a system design is good
or bad.)

