
Slides by Kevin Pusich and Cody Kesting

with material from Erin Peach and Nick Carney, Vinod Rathnam,
Alex Mariakakis, Krysta Yousoufian, Mike Ernst, Kellen Donohue

Section 4:
Graphs and Testing

✕ Graphs (HW 5)
✕ JUnit Testing
✕ Test Script Language
✕ JavaDoc

Agenda

Graphs

✕ Node

✕ Edge

Graphs

✕ Node
+ data item in a graph

✕ Edge
+ connection between two nodes

Graphs

✕ Directed graph: edges have a source
and destination

✕ Edges represented with arrows

✕ Parent/child nodes: related by an edge

Graphs
collection of nodes (vertices) and edges

A B

C D

E

Nodes: states or
objects within the graph
Edges: connection
between two nodes

Edges can be:

• Directed

• Undirected

What are some examples where each type of
edge would be useful?

Graphs

A B

C D

Directed:
• Flight itinerary
• Class dependencies

Undirected:
• Facebook friends
• Computer networks

Graphs

Seattle Zürich John Sally

* Common term: Directed Acyclic Graph (DAG)

Graphs

A B

C D

E

Children of A?

Graphs

A B

C D

E

Children of A:
nodes reached by an
edge starting at node
A

Graphs

A B

C D

E

Parents of D?

Graphs

A B

C D

E

Parents of D:
nodes that have an
edge ending at node D

Graphs

A B

C D

E

Paths from
A to C:
a sequence or
ordered list of
edges starting at A
and ending at C

Graphs

A B

C D

E

Paths from
A to C:

A ⇒ C

A ⇒ D ⇒ E ⇒ C

Shortest path
from A to C?

REMINDER:
You’ve seen Graphs before!

Luke

Linked Lists Binary Trees

A B C

Leia Droids

C3PO R2-D2

Before we move on...

Read the wikipedia article
in the spec!

(It has implementation
hints!)

Testing

Internal vs. external

✕ Internal : JUnit
+ How you decide to implement the object
+ Checked with implementation tests

✕ External: test script
+ Your API and specifications
+ Testing against the specification
+ Checked with specification tests

A JUnit test class

✕ A method with @Test is flagged as a JUnit test
✕ All @Test methods run when JUnit runs

import org.junit.*;
import static org.junit.Assert.*;

public class TestSuite {

@Test
public void Test1() { … }

Using JUnit assertions

✕ Verifies that a value matches expectations
✕ assertEquals(42, meaningOfLife());
✕ assertTrue(list.isEmpty());

✕ If the assert fails:
+ Test immediately terminates
+ Other tests in the test class are still run as

normal
+ Results show “details” of failed tests (We’ll get to this later)

Using JUnit assertions
Assertion Case for failure
assertTrue(test) the boolean test is false
assertFalse(test) the boolean test is true
assertEquals(expected, actual) the values are not equal
assertSame(expected, actual) the values are not the same (by ==)
assertNotSame(expected, actual) the values are the same (by ==)
assertNull(value) the given value is not null
assertNotNull(value) the given value is null

• And others: https://junit.org/junit4/javadoc/4.11/org/junit/Assert.html
Each method can also be passed a string to display if it
fails:
• assertEquals("message", expected, actual)

USING JUNIT ASSERTIONS

• When writing JUnit assertions, make sure to use the appropriate
test
• Ex: Testing Java’s List.size()

Use assertEquals(list.size(), 1)
Don’t use assertTrue(list.size() == 1)

Checking for exceptions

✕ Verify that a method throws an exception
when it should:
✕ Passes only if specified exception is thrown

✕ Only time it’s OK to write a test without a
form of asserts

@Test(expected=IndexOutOfBoundsException.class)
public void testGetEmptyList() {

List<String> list = new ArrayList<String>();
list.get(0);

}

Setup and teardown

✕ Methods to run before/after each test case method is
called:

@Before
public void name() { ... }
@After
public void name() { ... }

✕ Methods to run once before/after the entire test class
runs:

@BeforeClass
public static void name() { ... }
@AfterClass
public static void name() { ... }

Setup and teardown

public class Example {
List empty;

@Before
public void initialize() {

empty = new ArrayList();
}
@Test
public void size() {...}
@Test
public void remove() {...}

}

Test Writing Etiquette

1. Don’t Repeat Yourself
◦ Use constants and helper methods

2. Be Descriptive
◦ Take advantage of message, expected, and actual values
◦ Ex: testAddElementToEmptyList instead of testAdd

3. Keep Tests Small
◦ Isolate bugs one at a time; failing assertion halts test
◦ Helps to catch bugs at the source

4. Be Thorough
◦ Test big, small, boundaries, exceptions, errors

5. Order of Testing Matters
◦ If methodB() relies on methodA() to work correctly, test methodA()

first

Ground rules

Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months

@Test
public void testAddDaysWrapToNextMonth() {

Date actual = new Date(2050, 2, 15);

actual.addDays(14);

Date expected = new Date(2050, 3, 1);

assertEquals("date after +14 days",

expected, actual);

}

How to create JUnit test classes

✕ Right-click hw5.test -> New -> JUnit Test Case

✕ Important: Follow naming guidelines we provide

✕ Demo

JUnit asserts vs. Java asserts

✕ We’ve just been discussing JUnit
assertions so far
✕ Tests for incorrect behavior

✕ Java itself has assertions
✕ Tests for invalid states

public class LitterBox {
ArrayList<Kitten> kittens;
public Kitten getKitten(int n) {

assert(n >= 0);
return kittens(n);

}
}

Reminder: Enabling asserts in
Eclipse

To enable asserts:
Go to Run -> Run Configurations… ->
Arguments tab -> input -ea in VM arguments
section

Don’t forgot your CheckReps!

✕ ant validate and staff grading will have assertions
enabled

✕ But sometimes a checkRep can be expensive
✕ For example, looking at each node in a Graph with a

large number of nodes

✕ This could cause the grading scripts to timeout

Expensive CheckReps

Expensive CheckReps

✕ Before your final commit, remove the checking of expensive parts of
your checkRep or the checking of your checkRep entirely

✕ Example: boolean flag and structure your checkRep as so:

private void checkRep() {
cheap-stuff
if(DEBUG_FLAG) { // or can have this for entire checkRep

expensive-stuff
}
cheap-stuff
...

External tests:
Test script language

Test script language

✕ Text file with one command listed per line
✕ First word is always the command name
✕ Remaining words are arguments
✕ Commands will correspond to methods in

your code

Test script language

Create a graph
CreateGraph graph1

Add a pair of nodes
AddNode graph1 n1
AddNode graph1 n2

Add an edge
AddEdge graph1 n1 n2 e1

Print the nodes in the graph
and the outgoing edges from n1
ListNodes graph1
ListChildren graph1 n1

n1 n2e1

graph1

Test script language

Create a graph
CreateGraph graph1

Add a pair of nodes
AddNode graph1 n1
AddNode graph1 n2

Add an edge
AddEdge graph1 n1 n2 e1

Print the nodes in the graph
and the outgoing edges from n1
ListNodes graph1
ListChildren graph1 n1

n1 n2e1

graph1

Test script language

Create a graph
created graph graph1

Add a pair of nodes
added node n1 to graph1
added node n2 to graph1

Add an edge
added edge e1 from n1 to n2 in graph1

Print the nodes in the graph and the
outgoing edges from n1
graph1 contains: n1 n2
the children of n1 in graph1 are: n2(e1)

n1 n2e1

graph1

How to create specification tests

✕ Create .test and .expected file pairs under hw5.test

✕ Implement parts of HW5TestDriver

+ driver connects commands from .test file to your Graph

implementation to the output which is matched with

.expected file

✕ Run all tests by running SpecificationTests.java

+ Note: staff will have our own .test and .expected pairs to run

with your code

+ Do not hardcode .test/.expected pairs to pass, but instead

make sure the format in hw5 instructions is correctly

followed

Workflow for Specification Tests

.test
file

HW5
Test

Driver

Graph
.java

HW5
Test

Driver

.actual
file

Translate
commands,
apply them to
your graph

Read in
commands

Return results
of commands

Formats output
to match expected
output style

Demo: Test script language

JavaDoc API

✕ Now you can generate the JavaDoc
API for your code

✕ Instructions in the Editing/Compiling
Handout

✕ Demo: Generate JavaDocs
✕ Demo steps are in spec

