SECTION 1:

CODE REASONING +
VERSION CONTROL

CSE 331 — Spring 2018

OUTLINE

e Introductions

e Code Reasoning
e Forward Reasoning
e Backward Reasoning
e Weaker vs. Stronger statements

e Version control

REASONING ABOUT
CODE

- Two purposes

* Prove our code is correct
» Understand why code is correct

 Forward reasoning: determine what follows from initial
conditions

 Backward reasoning: determine sufficient conditions to
obtain a certain result

TERMINOLOGY

* The program state is the values of all
the (relevant) variables

* An assertion is a logical formula
referring to the program state (e.g.,
contents of variables) at a given point

* An assertion holds for a program state if
the formula is true when those values
are substituted for the variables

TERMINOLOGY

An assertion before the code is a
precondition - these represent

assumptions about when that code is
used

An assertion after the code is a

postcondition - these represent what we
want the code to accomplish

FORWARD
REASONING

 Given: Precondition

* Finds: postcondition for given
precondition.

« Aka Finds program state after executing code,
when using given assumptions of program state
before execution.

FORWARD
REASONING

// {x >= 0, y >= 0}
y = 16;

FORWARD
REASONING

// {x > 0, y >= 0}
y = 16;

// {x >0, y = 16}
X =X +y

//

x = sqrt(x)

//

FORWARD
REASONING

// {x > 0, y >= 0}
y = 16;

// {x >0, y = 16}
X =X +y

// {x > 16, y = 16}
X = sqrt(x)

//

FORWARD
REASONING

// {x > 0, y >= 0}

y = 16;

// {x >0, y = 16}

X =X +y

// {x > 16, y = 16}
X = sqrt(x)

// {x >= 4, y = 16}

Yy =Y X

//

FORWARD
REASONING

// {x >= 0, y >= 0}
y = 16;

// {x >= 0, y = 16}
X =X +y

// {x > 16, y = 16}
x = sqgrt(x)

// {x >= 4, y = 16}
Yy =Y X

// {x >= 4, y <= 12}

FORWARD

REASONING
// {true}
if (x>0) {
//
abs = x
//
}
else {
//
abs = -x
//
}
//

//

FORWARD
REASONING

// {true}

if (x>0) {
// {x > 0}
abs = x
//

}

else {
// {x <= 0}
abs = -x
//

}

//

//

FORWARD
REASONING

// {true}

if (x>0) {
// {x > 0}
abs = x

// {x > 0, abs = x}

else {
// {x <= 0}
abs = -x
// {x <= 0, abs = -x}

//
//

FORWARD
REASONING

// {true}

if (x>0) {
// {x > 0}
abs = x

// {x > 0, abs = x}

else {
// {x <= 0}
abs = -x
// {x <= 0, abs = -x}
}
// {x >0, abs = x OR x <= 0, abs = -x}
//

FORWARD
REASONING

// {true}

if (x>0) {
// {x > 0}
abs = x

// {x > 0, abs = x}

else {
// {x <= 0}
abs = -x
// {x <= 0, abs = -x}
}
// {x >0, abs = x OR x <= 0, abs = -x}
// {abs = |x|}

BACKWARD
REASONING

 Given: Postcondition

* Finds: The weakest precondition for
given postcondition.

ASIDE: WEAKEST
PRECONDTION?

* What is weakest precondition?

* Well, precondition is just a statement,
so...Better ask what makes a statement
weaker vs. Stronger?

WEAKER VS.
STRONGER

e Weaker statements = more general

e Stronger statements = more specific aka more
informational

e Stronger statements are more restrictive
o Ex:x =16 is stronger than x>0

o Ex: “Alex is an awesome TA" is stronger than “Alex is a
TA”
e If A implies B, A is stronger and B is weaker.
e If B implies A, B is stronger and A is weaker.
e If neither, then A and B not comparable.

BACKWARD
REASONING

 Given: Postcondition

* Finds: The weakest precondition for
given postcondition.

* S0, finds most general assumption code
will use to get given postcondition.

BACKWARD
REASONING

//
a=x+ b;
//
c =2b - 4
//
X =a + c

// {x > 0}

BACKWARD
REASONING

//

a=x+b;

//

c =2b - 4
// {a + ¢ > 0}
X =a + c

// {x > 0}

BACKWARD

REASONING
//

a=x + b;

// {a + 2b - 4 > 0}
c =2b - 4

// {a + ¢ > 0}
X = a + c

// {x > 0}

BACKWARD
REASONING

// Backward reasoning is used to determine the

// weakest precondition
// {x + 3b - 4 > 0}

a =x + b;
// {a + 2b - 4 > 0}
c =2b - 4

// {a + ¢ > 0}
X = a + c

// {x > 0}

HOARE TRIPLES

e Hoare triples are just an extension of
logical implication
o Hoare triple: {P} S {Q}
o P = precondition
o S = single line of code
o Q = postcondition
o A Hoare triple can be valid or invalid

o Valid if for all states for which P
holds, executing S always produces
a state for which Q holds

o Invalid otherwise

HOARE TRIPLE
EXAMPLE #1

* {x!=0}y=x"%;{y >0}
e |s this valid?

HOARE TRIPLE
EXAMPLE #1

* {x!=0}y=x"%;{y >0}
e |s this valid?

e Yes

HOARE TRIPLE
EXAMPLE #2

» |s {false} S {Q} a valid Hoare triple?

HOARE TRIPLE
EXAMPLE #2

» |s {false} S {Q} a valid Hoare triple?

 Yes. Because P is false, there are no
conditions when P holds

 Therefore, for all states where P holds (i.e.

none) executing S will produce a state in
which Q holds

HOARE TRIPLE
EXAMPLE #3

* Is {P} S {true} a valid Hoare triple?

HOARE TRIPLE
EXAMPLE #3

* Is {P} S {true} a valid Hoare triple?

* Yes. Any state for which P holds that is
followed by the execution of S will produce
some state

« For any state, true always holds (i.e. true is
true)

VERSION CONTROL

WHAT IS VERSION
CONTROL?

e Also known as source control/revision control

e System for tracking changes to code
o Software for developing software
e Essential for managing projects

o See a history of changes
o Revert back to an older version
o Merge changes from multiple sources

e We'll be talking about git/GitLab, but there are
alternatives

o Subversion, Mercurial, CVS
o Email, Dropbox, USB sticks (don’t even think of doing this)

VERSION CONTROL
ORGANIZATION

e A repository stores the
master copy of the project

o Someone creates the repo for a new
project

o Then nobody touches this copy directly

o Lives on a server everyone can access

e Each person clones her
own working copy

o Makes a local copy of the repo
o You'll always work off of this copy

o The version control system syncs the
repo and working copy (with your help)

~H—r
i
LTy |

Reposi

tory

Working
copy

Working
copy

REPOSITORY

e Can create the repository anywhere

o Can be on the same computer that you're going to
work on, which might be ok for a personal project
where you just want rollback protection

e But, usually you want the repository to be robust:

o On a computer that’'s up and running 24/7
m Everyone always has access to the project

o On a computer that has a redundant file system

m No more worries about that hard disk crash
wiping away your project!

e We'll use CSE GitLab — very similar to GitHub but tied to
CSE accounts and authentication

VERSION CONTROL
COMMON ACTIONS

Most common commands:
e commit/ push

o integrate changes from your working
copy into the repository

e pull

o integrate changes into your working
copy from the repository

I~
.
AL,_ l

Repository

RS

git

push

Working
copy

VERSION CONTROL
UPDATING FILES

In a bit more detail:

e You make some local changes,
test them, etc., then...

e it add - tell git which changed
files you want to save in repo

e git commit — save all files you've
“add”ed in the local repo copy
as an identifiable update

e (Qit push — synchronize with the
GitLab repo by pushing local
committed changes

-

U T—H
Ty
- —
¥ -
oy

RepOSItory

I

push

Working
copy

VERSION CONTROL
COMMON ACTIONS (CONT.)

Other common commands: il l

® add, 'm R;pository
= lr'/
o add or delete a file in the working copy o

o just putting a new file in your working
copy does not add it to the repo!
o still need to commit to make permanent -

git

||Ind

push

Working
copy

THIS QUARTER

We distribute starter code by adding it to your
GitLab repo. You retrieve it with git clone the
first time then git pull for later assignments

You will write code using Eclipse

You turn in your files by adding them to the
repo, committing your changes, and eventually
pushing accumulated changes to GitLab

You “turn in” an assignment by tagging your
repo and pushing the tag to GitLab

You will validate your homework by SSHing

onto attu, cloning your repo, and running an Ant
build file

331 VERSION CONTROL

ﬁ create/push
|

Working copy for
grading

Q

Repository

N\

2 Ind/auo|d

M AN

commit/push

Vv L

m_J

m_J

, add
-

e

AVOIDING GIT PROBLEMS

e For the projects in this class, you should never have to
merge

e Except when the staff pushes out a new assignment

e Rules of thumb for working in multiple places:

e Each time before you start working on your assignment, git pull to get
the latest code

e Each time after you are done working for a while, git add/commit/push in
order to update the repository with the latest code

