
Zach Tatlock / Spring 2018

CSE 331
Software Design and Implementation

Lecture 12
Assertions & Exceptions

OUTLINE
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how in Java
– How to throw, catch, and declare exceptions
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review

Failure happens!
In 2000 there were reports that transient faults caused crashes at a
number of Sun’s major customer sites, including America Online and eBay.
Later, Hewlett Packard admitted multiple problems in the Los Alamos Labs
supercomputers due to transient faults. Finally, Cypress Semiconductor
has confirmed “The wake-up call came in the end of 2001 with a major
customer reporting havoc at a large telephone company. Technically, it
was found that a single soft fail. . . was causing an interleaved system farm
to crash”.

Fault-tolerant Typed Assembly Language
-- Walker et al.

Failure causes

Partial failure is inevitable
– Goal: prevent complete failure
– Structure your code to be reliable and understandable

Some failure causes:

1. Misuse of your code
– Precondition violation

2. Errors in your code
– Bugs, representation exposure, …

3. Unpredictable external problems
– Out of memory, missing file, …

What to do when something goes wrong

Fail early, fail friendly

Goal 1: Give information about the problem
– To the programmer – a good error message is key!
– To the client code: via exception or return-value or …

Goal 2: Prevent harm
Abort: inform a human

• Perform cleanup actions, log the error, etc.
Re-try:

• Problem might be transient
Skip a subcomputation:

• Permit rest of program to continue
Fix the problem?

• Usually infeasible to repair from an unexpected state

Avoiding errors

A precondition prohibits misuse of your code
– Adding a precondition weakens the spec

This ducks the problem of errors-will-happen
– Mistakes in your own code
– Misuse of your code by others

Removing a precondition requires specifying more behavior
– Often a good thing, but there are tradeoffs
– Strengthens the spec
– Example: specify that an exception is thrown

OUTLINE
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how
– How to throw, catch, and declare exceptions in Java
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review

Defensive programming

Check:
– Precondition
– Postcondition
– Representation invariant
– Other properties that you know to be true

Check statically via reasoning and tools
Check dynamically via assertions

assert index >= 0;
assert items != null : "null item list argument"
assert size % 2 == 0 : "Bad size for " +

toString();
– Write assertions as you write code
– Include descriptive messages

Enabling assertions

In Java, assertions can be enabled or disabled at runtime without
recompiling

Command line:
java –ea runs code with assertions enabled
java runs code with assertions disabled (default)

Eclipse:
Select Run>Run Configurations… then add -ea to VM
arguments under (x)=arguments tab

(These tool details were covered in section already)

When not to use assertions

Don’t clutter the code with useless, distracting repetition
x = y + 1;
assert x == y + 1;

Don’t perform side effects
assert list.remove(x); // won’t happen if disabled

// Better:
boolean found = list.remove(x);
assert found;

Turn them off in rare circumstances (production code(?))
– Most assertions better left enabled

Don’t go to sea without your lifejacket!
Finally, it is absurd to make elaborate security checks on
debugging runs, when no trust is put in the results, and then
remove them in production runs, when an erroneous result could
be expensive or disastrous. What would we think of a sailing
enthusiast who wears his lifejacket when training on dry land, but
takes it off as soon as he goes to sea?

Hints on Programming Language Design
-- C.A.R. Hoare

assert and checkRep()

CSE 331’s checkRep() is another dynamic check

Strategy: use assert in checkRep() to test and fail with
meaningful traceback/message if trouble found

– Be sure to enable asserts when you do this!

Asserts should be enabled always for CSE 331 projects
– We will enable them for grading

Expensive checkRep()tests

Detailed checks can be too slow in production

But complex tests can be very helpful, particularly during
testing/debugging (let the computer find problems for you!)

No perfect answers; suggested strategy for checkRep:
– Create a static, global “debug” or “debugLevel” variable
– Run expensive tests when this is enabled
– Turn it off in graded / production code if tests are too

expensive

Often helpful: put expensive / complex tests in separate methods
and call as needed

Square root

// requires: x ³ 0
// returns: approximation to square root of x
public double sqrt(double x) {

...
}

Square root with assertion

// requires: x ³ 0
// returns: approximation to square root of x
public double sqrt(double x) {

assert (x >= 0.0);
double result;
… compute result …
assert (Math.abs(result*result – x) < .0001);
return result;

}

– These two assertions serve very different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in
this lecture as examples.)

OUTLINE
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how
– How to throw, catch, and declare exceptions in Java
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review

Square root, specified for all inputs

// throws: IllegalArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)

throws IllegalArgumentException
{

if (x < 0)
throw new IllegalArgumentException();

…
}

• throws is part of a method signature: “it might happen”
– Comma-separated list

• throw is a statement that actually causes exception-throw
– Immediate control transfer [like return but different]

Using try-catch to handle exceptions

public double sqrt(double x)
throws IllegalArgumentException

…

Client code:
try {

y = sqrt(…);
} catch (IllegalArgumentException e) {

e.printStackTrace(); //and/or take other actions
}

Handled by nearest dynamically enclosing try/catch
– Top-level default handler: stack trace, program terminates

Throwing and catching

• Executing program has a stack of
currently executing methods
– Dynamic: reflects runtime order of

method calls
– No relation to static nesting of

classes, packages, etc.
• When an exception is thrown, control

transfers to nearest method with a
matching catch block
– If none found, top-level handler prints

stack trace and terminates
• Exceptions allow non-local error handling

– A method many levels up the stack
can handle a deep error

Exception-handling mechanisms in modern
programming languages help software developers build
robust applications by separating the normal control flow
of a program from the control flow of the program under
exceptional situations. ... One consequence is that
developers wishing to improve the robustness of a
program must figure out which exceptions, if any, can
flow to a point in the program. Unfortunately, in large
programs, this exceptional control flow can be
difficult, if not impossible, to determine.

Gail C Murphy
Static Analysis to Support the Evolution of
Exception Structure in Object-Oriented Systems

Catching with inheritance

try {
code…
} catch (FileNotFoundException fnfe) {

code to handle a file not found exception
} catch (IOException ioe) {

code to handle any other I/O exception
} catch (Exception e) {

code to handle any other exception
}

• A SocketException would match the second block
• An ArithmeticException would match the third block
• Subsequent catch blocks need not be supertypes like this

Exception Hierarchy

Java’s checked/unchecked distinction

Checked exceptions (style: for special cases)
– Callee: Must declare in signature (else type error)
– Client: Must either catch or declare (else type error)

• Even if you can prove it will never happen at run time, the
type system does not “believe you”

– There is guaranteed to be a dynamically enclosing catch

Unchecked exceptions (style: for never-expected)
– Library: No need to declare
– Client: No need to catch
– Subclasses of

RuntimeException
and Error

Throwable

Runtime
Exception

ErrorException

Checked
exceptions

Checked vs. unchecked

• No perfect answer to “should possible exceptions thrown” be part of
a method signature
– So Java provided both

• Advantages to checked exceptions:
– Static checking of callee ensures no other checked exceptions

get thrown
– Static checking of caller ensures caller does not forget to check

• Disadvantages:
– Impedes implementations and overrides
– Often in your way when prototyping
– Have to catch or declare even in clients where the exception is

not possible

The finally block

finally block is always executed
– Whether an exception is thrown or not

try {
code…

} catch (Type name) {
code… to handle the exception

} finally {
code… to run after the try or catch finishes

}

What finally is for

finally is used for common “must-always-run” or “clean-up” code
– Avoids duplicated code in catch branch[es] and after
– Avoids having to catch all exceptions

try {
// ... write to out; might throw exception

} catch (IOException e) {
System.out.println("Caught IOException: "

+ e.getMessage());
} finally {

out.close();
}

OUTLINE
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how in Java
– How to throw, catch, and declare exceptions
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review

Propagating an exception

// returns: x such that ax^2 + bx + c = 0
// throws: IllegalArgumentException if no real soln exists
double solveQuad(double a, double b, double c)

throws IllegalArgumentException
{
// No need to catch exception thrown by sqrt
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

Aside: How can clients know if a set of arguments
to solveQuad is illegal?

Why catch exceptions locally?

Failure to catch exceptions usually violates modularity
– Call chain: A ® IntegerSet.insert ® IntegerList.insert
– IntegerList.insert throws some exception

• Implementer of IntegerSet.insert knows how list is being used
• Implementer of A may not even know that IntegerList exists

Method on the stack may think that it is handling an exception raised by
a different call

Better alternative: catch it and throw again
– “chaining” or “translation”
– Do this even if the exception is better handled up a level
– Makes it clear to reader of code that it was not an omission

Exception translation
// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)

throws NotRealException {
try {

return (-b + sqrt(b*b - 4*a*c)) / (2*a);
} catch (IllegalArgumentException e) {

throw new NotRealException(); // “chaining”
}

}

class NotRealException extends Exception {
NotRealException() { super(); }
NotRealException(String message) { super(message); }
NotRealException(Throwable cause) { super(cause); }
NotRealException(String msg, Throwable c) { super(msg, c); }

}

Exceptions as non-local control flow

void compile() {
try {

parse();
typecheck();
optimize();
generate():

} catch (RuntimeException e) {
Logger.log("Failed: " + e.getMessage());

}
}

– Not common – usually bad style, particularly at small scale
– Java/C++, etc. exceptions are expensive if thrown/caught
– Reserve exceptions for exceptional conditions

Two distinct uses of exceptions

• Failures
– Unexpected
– Should be rare with well-written client and library
– Can be the client’s fault or the library’s
– Usually unrecoverable

• Special results
– Expected but not the common case
– Unpredictable or unpreventable by client

Handling exceptions

• Failures
– Usually can’t recover
– If condition not checked, exception propagates up the stack
– The top-level handler prints the stack trace
– Unchecked exceptions the better choice (else many

methods have to declare they could throw it)

• Special results
– Take special action and continue computing
– Should always check for this condition
– Should handle locally by code that knows how to continue
– Checked exceptions the better choice (encourages local

handling)

Don’t ignore exceptions

Effective Java Tip #65: Don't ignore exceptions

Empty catch block is (common) poor style – often done to get code to
compile despite checked exceptions

– Worse reason: to silently hide an error
try {

readFile(filename);
} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened
– And exit if that’s appropriate for the application
} catch (IOException e) {

e.printStackTrace();
System.exit(1);

}

OUTLINE
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how in Java
– How to throw, catch, and declare exceptions
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review

Informing the client of a problem
Special value:

– null for Map.get
– -1 for indexOf
– NaN for sqrt of negative number

Advantages:
– For a normal-ish, common case, it “is” the result
– Less verbose clients than try/catch machinery

Disadvantages:
– Error-prone: Callers forget to check, forget spec, etc.
– Need “extra” result: Doesn’t work if every result could be real

• Example: if a map could store null keys
– Has to be propagated manually one call at a time

General Java style advice: Exceptions for exceptional conditions
– Up for debate if indexOf not-present-value is exceptional

Special values in C/C++/others

• For errors and exceptional conditions in Java, use exceptions!

• But C doesn’t have exceptions and some C++ projects avoid them

• Over decades, a common idiom has emerged
– Error-prone but you can get used to it L
– Affects how you read code
– Put “results” in “out-parameters”
– Result is a boolean (int in C) to indicate success or failure

type result;
if(!computeSomething(&result)) { … return 1; }
// no "exception", use result

• Bad, but less bad than error-code-in-global-variable

OUTLINE
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how in Java
– How to throw, catch, and declare exceptions
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review

Exceptions: review

Use an exception when
– Used in a broad or unpredictable context
– Checking the condition is feasible

Use a precondition when
– Checking would be prohibitive

• E.g., requiring that a list be sorted
– Used in a narrow context in which calls can be checked

Use a special value when
– It is a reasonable common-ish situation
– Clients are likely (?) to remember to check for it

Use an assertion for internal consistency checks that should not fail

Exceptions: review, continued

Use checked exceptions most of the time
– Static checking is helpful

But maybe avoid checked exceptions if possible for many callers to
guarantee exception cannot occur

Handle exceptions sooner rather than later

Not all exceptions are errors
– Example: File not found

Good reference: Effective Java, Chapter 9
– A whole chapter? Exception-handling design matters!

