
Zach Tatlock / Spring 2018

CSE 331
Software Design and Implementation

Lecture 11
Subtypes and Subclasses

Let P(x) be a property provable about
objects x of type T. Then P(y) should be
true for objects y of type S where S is a
subtype of T.

-- Barbara Liskov

The Liskov Substitution Principle

This means B is a subtype of
A if anywhere you can use an
A, you could also use a B.

What is subtyping?
Sometimes “every B is an A”

– Example: In a library database:
• Every book is a library holding
• Every CD is a library holding

Subtyping expresses this
– “B is a subtype of A” means:

“every object that satisfies the rules for a B
also satisfies the rules for an A”

Goal: code written using A's specification operates correctly even if
given a B

– Plus: clarify design, share tests, (sometimes) share code

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

Subtypes are substitutable

Subtypes are substitutable for supertypes
– Instances of subtype won't surprise client by failing to satisfy

the supertype's specification
– Instances of subtype won't surprise client by having more

expectations than the supertype's specification

We say that B is a true subtype of A if B has a stronger
specification than A

– This is not the same as a Java subtype
– Java subtypes that are not true subtypes are confusing and
dangerous

• But unfortunately common poor-design L

Subtyping vs. subclassing

Substitution (subtype) — a specification notion
– B is a subtype of A iff an object of B can masquerade as an

object of A in any context
– About satisfiability (behavior of a B is a subset of A’s spec)

Inheritance (subclass) — an implementation notion
– Factor out repeated code
– To create a new class, write only the differences

Java purposely merges these notions for classes:
– Every subclass is a Java subtype

• But not necessarily a true subtype

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products…

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice() {

return price;
}

public int getTax() {
return (int)(getPrice() * 0.096);

}
…

}

... and we need a class for products that are on sale

We know: don’t copy code!

We would never dream of cutting and pasting like this:

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice() {

return (int)(price*factor);
}
public int getTax() {

return (int)(getPrice() * 0.096);
}
…

}

Inheritance makes small extensions small

Much better:

class SaleProduct extends Product {
private float factor;
public int getPrice() {

return (int)(super.getPrice()*factor);
}

}

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods
– In implementation

• Simpler maintenance: fix bugs once
– In specification

• Clients who understand the superclass specification need
only study novel parts of the subclass

– Modularity: can ignore private fields and methods of
superclass (if properly defined)

– Differences not buried under mass of similarities

• Ability to substitute new implementations
– No client code changes required to use new subclasses

Subclassing can be misused

• Poor planning can lead to a muddled class hierarchy
– Relationships may not match untutored intuition

• Poor design can produce subclasses that depend on many
implementation details of superclasses

• Changes in superclasses can break subclasses
– “fragile base class problem”

• Subtyping and implementation inheritance are orthogonal!
– Subclassing gives you both
– Sometimes you want just one

• Interfaces: subtyping without inheritance [see also section]
• Composition: use implementation without subtyping

– Can seem less convenient, but often better long-term

Is every square a rectangle?
interface Rectangle {

// effects: fits shape to given size:
// thispost.width = w, thispost.height = h
void setSize(int w, int h);

}
interface Square extends Rectangle {…}

Are any of these good options for Square’s setSize specification?
1. // requires: w = h

// effects: fits shape to given size
void setSize(int w, int h);

2.// effects: sets all edges to given size
void setSize(int edgeLength);

3.// effects: sets this.width and this.height to w
void setSize(int w, int h);

4. // effects: fits shape to given size
// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;

Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
– Rectangles are expected to have a width and height

that can be mutated independently
– Squares violate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
– Squares are expected to have equal widths and heights
– Rectangles violate that expectation, could surprise client

Subtyping is not always intuitive
– Benefit: it forces clear thinking and prevents errors

Solutions:
– Make them unrelated (or siblings)
– Make them immutable (!)

• Recovers mathematical intuition

Rectangle

Square

Square

Rectangle

Shape

Square Rectangle

Inappropriate subtyping in the JDK
class Hashtable<K,V> {

public void put(K key, V value){…}
public V get(K key){…}

}

// Keys and values are strings.
class Properties extends Hashtable<Object,Object> {

public void setProperty(String key, String val) {
put(key,val);

}
public String getProperty(String key) {

return (String)get(key);
}

} Properties p = new Properties();
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
– Keys and values are Strings

But client can treat Properties as a Hashtable
– Can put in arbitrary content, break rep invariant

From Javadoc:
Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised" Properties object
that contains a non-String key or value, the call will fail.

Solution 1: Generics

Bad choice:
class Properties extends Hashtable<Object,Object> {

…
}
Better choice:
class Properties extends Hashtable<String,String> {

…
}

JDK designers deliberately didn’t do this. Why?
– Backward-compatibility (Java didn’t used to have generics)
– Postpone talking about generics: upcoming lecture

Solution 2: Composition

class Properties {
private Hashtable<Object, Object> hashtable;

public void setProperty(String key, String value) {
hashtable.put(key,value);

}

public String getProperty(String key) {
return (String) hashtable.get(key);

}

…
}

Substitution principle for classes
If B is a subtype of A, a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
– Anything provable about an A is provable about a B
– If an instance of subtype is treated purely as supertype (only

supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated

B is permitted to strengthen properties and add properties
– Fine to add new methods (that preserve invariants)
– An overriding method must have a stronger (or equal) spec

B is not permitted to weaken a spec
– No method removal
– No overriding method with a weaker spec

Substitution principle for methods
Constraints on methods

– For each supertype method, subtype must have such a method
• Could be inherited or overridden

Each overriding method must strengthen (or match) the spec:
– Ask nothing extra of client (“weaker precondition”)

• Requires clause is at most as strict as in supertype’s method
– Guarantee at least as much (“stronger postcondition”)

• Effects clause is at least as strict as in the supertype method
• No new entries in modifies clause
• Promise more (or the same) in returns clause
• Throws clause must indicate fewer (or same) possible

exception types

Spec strengthening: argument/result types

Method inputs:
– Argument types in A’s foo may be

replaced with supertypes in B’s foo
(“contravariance”)

– Places no extra demand on the clients
– But Java does not have such overriding

• (Why?)
Method results:

– Result type of A’s foo may be replaced by
a subtype in B’s foo (“covariance”)

– No new exceptions (for values in the domain)
– Existing exceptions can be replaced with subtypes

(None of this violates what client can rely on)

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

Substitution exercise

Suppose we have a method which, when given one product,
recommends another:

class Product {
Product recommend(Product ref);

}
Which of these are possible forms of this method in SaleProduct
(a true subtype of Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref)

throws NoSaleException;

// OK

// OK, but is Java
overloading

// bad

// bad

Java subtyping

• Java types:
– Defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and
B implements A declarations

• In a Java subtype, each corresponding method has:
– Same argument types

• If different, overloading: unrelated methods
– Compatible (covariant) return types

• A (somewhat) recent language feature, not reflected in
(e.g.) clone

– No additional declared exceptions

Java subtyping guarantees
A variable’s run-time type (i.e., the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error
If a variable of declared (compile-time) type T1 holds a
reference to an object of actual (runtime) type T2, then T2 must
be a Java subtype of T1

Corollaries:
– Objects always have implementations of the methods

specified by their declared type
– If all subtypes are true subtypes, then all objects meet the

specification of their declared type

Rules out a huge class of bugs

Inheritance can break encapsulation
public class InstrumentedHashSet<E>

extends HashSet<E> {
private int addCount = 0; // count # insertions
public InstrumentedHashSet(Collection<? extends E> c){

super(c);
}
public boolean add(E o) {

addCount++;
return super.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() { return addCount; }

}

Dependence on implementation
What does this code print?

InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>();

System.out.println(s.getAddCount());
s.addAll(Arrays.asList("CSE", "331"));
System.out.println(s.getAddCount());

• Answer depends on implementation of addAll in HashSet
– Different implementations may behave differently!
– If HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:
– “Adds all of the elements in the specified collection to this

collection.”
– Does not specify whether it calls add

• Lesson: Subclassing often requires designing for extension

// 0

// 4?!

Solutions

1. Change spec of HashSet
– Indicate all self-calls
– Less flexibility for implementers of specification

2. Avoid spec ambiguity by avoiding self-calls
a) “Re-implement” methods such as addAll

• Requires re-implementing methods
b) Use a wrapper

• No longer a subtype (unless an interface is handy)
• Bad for callbacks, equality tests, etc.

Solution 2b: composition

public class InstrumentedHashSet<E> {
private final HashSet<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++; return s.add(o);
}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() { return addCount; }
// ... and every other method specified by HashSet<E>

}

The implementation
no longer matters

Delegate

Composition (wrappers, delegation)

Implementation reuse without inheritance

• Easy to reason about; self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):
– Does not preserve subtyping
– Tedious to write (your IDE should help you)
– May be hard to apply to callbacks, equality tests

Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore
– So can't easily substitute it

• It may be a true subtype of HashSet
– But Java doesn't know that!
– Java requires declared relationships
– Not enough just to meet specification

• Interfaces to the rescue
– Can declare that we implement interface Set
– If such an interface exists

Interfaces reintroduce Java subtyping
public class InstrumentedHashSet<E> implements Set<E>{

private final Set<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++;
return s.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() { return addCount; }
// ... and every other method specified by Set<E>

}

Avoid encoding
implementation details

What’s bad about this constructor?

InstrumentedHashSet(Set<E> s) {
this.s = s;
addCount = s.size();

}

Interfaces and abstract classes

Provide interfaces for your functionality
– Client code to interfaces rather than concrete classes
– Allows different implementations later
– Facilitates composition, wrapper classes

• Basis of lots of useful, clever techniques
• We'll see more of these later

Consider also providing helper/template abstract classes
– Can minimize number of methods that new implementation

must provide
– Makes writing new implementations much easier
– Not necessary to use them to implement an interface, so

retain freedom to create radically different implementations
that meet an interface

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>

implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>

extends AbstractCollection<E>
implements List<E>

// an old friend...
class ArrayList<E> extends AbstractList<E>

Why interfaces instead of classes?

Java design decisions:
– A class has exactly one superclass
– A class may implement multiple interfaces
– An interface may extend multiple interfaces

Observation:
– Multiple superclasses are difficult to use and to implement
– Multiple interfaces, single superclass gets most of the benefit

Pluses and minuses of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation
– A subclass may need to depend on unspecified details of the

implementation of its superclass
• E.g., pattern of self-calls

– Subclass may need to evolve in tandem with superclass
• Okay within a package where implementation of both is

under control of same programmer

• Authors of superclass should design and document self-use, to
simplify extension
– Otherwise, avoid implementation inheritance and use

composition instead

