CSE 331 Software Design and Implementation

Lecture 5 Abstract Data Types

Chandrakana Nandi / Spring 2018

Abstract Data Types

Hello!

Chandrakana Nandi

Procedural and data abstractions

Procedural abstraction:

- Abstract from details of *procedures* (e.g., methods)
- Specification is the abstraction
 - · Abstraction is the specification
- Satisfy the specification with an implementation

Data abstraction:

- Abstract from details of data representation
- Also a specification mechanism
 - · A way of thinking about programs and design
- Standard terminology: Abstract Data Type, or ADT

Bad programmers worry about the code. Good programmers worry about data structures and their relationships.

-- Linus Torvalds

Show me your flowcharts and conceal your tables, and I shall continue to be mystified. Show me your tables, and I won't usually need your flowcharts; they'll be obvious.

-- Fred Brooks

The need for data abstractions (ADTs)

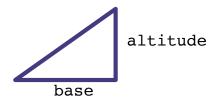
Organizing and manipulating data is pervasive

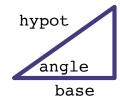
Inventing and describing algorithms less common

Start your design by designing data structures

- How will relevant data be organized
- What operations will be permitted on the data by clients
- Cf. CSE 332

Potential problems with choosing a data abstraction:


- Decisions about data structures often made too early
- Duplication of effort in creating derived data
- Very hard to change key data structures (modularity!)


An ADT is a set of operations

- ADT abstracts from the organization to meaning of data
- ADT abstracts from structure to use
- Representation should not matter to the client
 - So hide it from the client

```
class RightTriangle {
  float base, altitude;
}
```

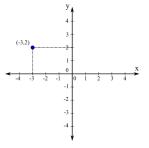
```
class RightTriangle {
  float base, hypot, angle;
}
```

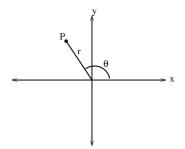

An ADT is a set of operations

- · ADT abstracts from the organization to meaning of data
- ADT abstracts from structure to use
- Representation should not matter to the client
 - So hide it from the client

```
class RightTriangle {
  float base, altitude;
}
```

```
class RightTriangle {
   float base, hypot, angle;
}
```


Instead, think of a type as a set of operations


create, getBase, getAltitude, getBottomAngle, ...

Force clients to use operations to access data

Are these classes the same?

```
class Point {
  public float x;     public float r;
  public float y;     public float theta;
}
```


Are these classes the same?

```
class Point {
  public float x;
  public float y;
  public float theta;
}
```

Different: cannot replace one with the other in a program

Same: both classes implement the concept "2-d point"

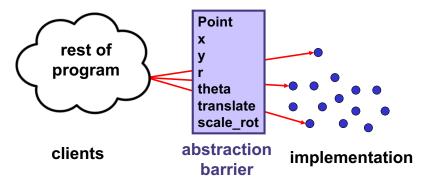
Goal of ADT methodology is to express the sameness:

- Clients depend only on the concept "2-d point"

Benefits of ADTs

If clients "respect" or "are forced to respect" data abstractions...

- For example, "it's a 2-D point with these operations..."
- · Can delay decisions on how ADT is implemented
- · Can fix bugs by changing how ADT is implemented
- · Can change algorithms
 - For performance
 - In general or in specialized situations
- ...


We talk about an "abstraction barrier"

A good thing to have and not cross (also known as violate)

Concept of 2-d point, as an ADT

```
class Point {
 // A 2-d point exists in the plane, ...
 public float x();
 public float y();
                               Observers
 public float r();
 public float theta();
 // ... can be created, ...
                                                Creators/
 public Point(); // new point at (0,0)
 public Point centroid(Set<Point> points);
                                                Producers
 // ... can be moved, ...
 public void translate(float delta x,
                        float delta y);
                                                  -Mutators
 public void scaleAndRotate(float delta r,
                             float delta theta);
```

Abstract data type = objects + operations

Implementation is hidden

Only operations on objects of the type are provided by abstraction

Specifying a data abstraction

A *collection* of procedural abstractions

- Not a collection of procedures

An abstract state

- Not the (concrete) representation in terms of fields, objects, ...
- "Does not exist" but used to specify the operations
- Concrete state, not part of the specification, implements the abstract state (more in upcoming lecture)

Each operation described in terms of "creating", "observing", "producing", or "mutating"

- No operations other than those in the specification

Specifying an ADT

Immutable

1. overview

abstract state

3. creators

4. observers

5. producers

6. mutators

Mutable

1. overview

2. abstract state

3. creators

4. observers

5. producers (rare)

6. mutators

Creators: return new ADT values (e.g., Java constructors)

Producers: ADT operations that return new values

· Mutators: Modify a value of an ADT

· Observers: Return information about an ADT

Implementing an ADT

To implement a data abstraction (e.g., with a Java class):

- See next two lectures
- This lecture is just about specifying an ADT
- Nothing about the concrete representation appears in spec

Poly, an immutable datatype: overview

Overview:

- State whether mutable or immutable
- Define an abstract model for use in operation specifications
 - Difficult and vital!
 - · Appeal to math if appropriate
 - Give an example (reuse it in operation definitions)
- State in specifications is *abstract*, not concrete

Poly: creators

```
// effects: makes a new Poly = 0
public Poly()

// effects: makes a new Poly = cx<sup>n</sup>
// throws: NegExponent if n < 0
public Poly(int c, int n)</pre>
```

Creators

- New object, not part of pre-state: in effects, not modifies
- Overloading: distinguish procedures of same name by parameters (Example: two Poly constructors)

Footnote: slides omit full JavaDoc comments to save space; style might not be perfect either – focus on main ideas

Poly: observers

```
// returns: the degree of this,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.
public int degree()

// returns: the coefficient of the term
// of this whose exponent is d
// throws: NegExponent if d < 0
public int coeff(int d)</pre>
```

Notes on observers

Observers

- Used to obtain information about objects of the type
- Return values of other types
- Never modify the abstract value
- Specification uses the abstraction from the overview

this

- The particular Poly object being accessed
- Target of the invocation
- Also known as the receiver

```
Poly x = new Poly(4, 3);
int c = x.coeff(3);
System.out.println(c); // prints 4
```

Poly: producers

```
// returns: this + q (as a Poly)
public Poly add(Poly q)

// returns: the Poly equal to this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()
```

Notes on producers

Operations on a type that create other objects of the type

Common in immutable types like java.lang.String

String substring(int offset, int len)

No side effects

- Cannot change the abstract value of existing objects

IntSet, a mutable datatype: overview and creator

```
// Overview: An IntSet is a mutable,
// unbounded set of integers. A typical
// IntSet is { x1, ..., xn }.
class IntSet {
   // effects: makes a new IntSet = {}
   public IntSet()
```

IntSet: observers

```
// returns: true if and only if x ∈ this
public boolean contains(int x)

// returns: the cardinality of this
public int size()

// returns: some element of this
// throws: EmptyException when size() == 0
public int choose()
```

IntSet: mutators

```
// modifies: this
// effects: this<sub>post</sub> = this<sub>pre</sub> U {x}
public void add(int x)

// modifies: this
// effects: this<sub>post</sub> = this<sub>pre</sub> - {x}
public void remove(int x)
```

Notes on mutators

Operations that modify an element of the type

Rarely modify anything (available to clients) other than this

- List this in modifies clause (if appropriate)

Typically have no return value

- "Do one thing and do it well"
- (Sometimes return "old" value that was replaced)

Mutable ADTs may have producers too, but that is less common

Coming up...

Very related next lectures:

- · Representation invariants
- · Abstraction functions

Distinct, complementary ideas for ADT reasoning