CSE 331

Software Design and Implementation

Lecture 4
Specifications

Zach Tatlock / Spring 2018

Administrivia

Next assignments posted tonight:
— HW2: Written problems on loops
— Likely due 10am Tuesday April 10
— BUT: HW3 (Java warmup) due next week too!
— START EARLY!!

Draft reading schedule posted!
- Quiz links soon... (no more Catalyst ®)
- Midterm schedule also “soon” ©

2 Goals of Software System Building

+ Building the right system
— Does the program meet the user’s needs?
— Determining this is usually called validation

Building the system right
— Does the program meet the specification?
— Determining this is usually called verification

CSE 331: the second goal is the focus — creating a correctly
functioning artifact
— Surprisingly hard to specify, design, implement, test, and
debug even simple programs

Where we are

+ We've started to see how to reason about code
+ We'll build on those skills in many places:

— Specification: What are we supposed to build?

— Design: How do we decompose the job into manageable
pieces? Which designs are “better’?

— Implementation: Building code that meets the specification
— Testing: Systematically finding problems

— Debugging: Systematically fixing problems

— Maintenance: How does the artifact adapt over time?

— Documentation: What do we need to know to do these
things? How/where do we write that down?

The challenge of scaling software

Flexibility

A

Size

The challenge of scaling software

+ Small programs are simple and malleable
Easy to write
Easy to change

+ Big programs are (often) complex and inflexible
Hard to write

Hard to change

+ Why does this happen?
Because interactions become unmanageable

+ How do we keep things simple and malleable?

THE ARCHITECTURE OF COMPLEXITY
HERBERT A. SIMON*
Professor of Administration, Carnegie Institute of Technology
(Read April 26, 1962)

‘A NUMBER of proposals have been advanced in
recent years for the development of “general sys-
tems theory” which, abstracting from properties
peculiar to physical, biological, or social systems,
would be applicable to all of them. ' We might
well feel that, while the goal is laudable, systems
of such diverse kinds could hardly be expected to
have any nontrivial properties in common. Meta-
phor and analogy can be helpful, or they can be
misleading. All depends on whether the similari-
ties the metaphor captures are significant or su-
perficial.

It may not be entirely vain, however, to search
for common properties among diverse kinds of
complex systems. The ideas that go by the name
of cybernetics constitute, if not a theory, at least a
point of view that has been proving fruitful over
a wide range of applications.” It has been useful
to look at the behavior of adaptive systems in
terms of the concepts of feedback and homeosta-

* The ideas in this paper have been the topic of many
conversations with my colleague, Allen Newell. George
'W. Corner suggested imporiant improvements in biologi-
cal content as well as cditorial form. 1 am also indcbted,
for valuable comments on the manuscript, to Richard H.
Meicr, John R. Platt, and Warren Weaver. Some of the
conjecturcs about the nearly decomposable structure of
the_nucleus-atom-molecule hicrarchy were - checked
against the avaiable. quantitaiive. data. by Andrew
Schoene and William Wise. My work in this arca has

rted by a Ford Foundation grant for research
in orgamizations and a Camegie Cnrpummn grant for
rescarch on cognitive processes. To all of the above, my
warm thanks, and the usual absolution.

' See especially the yearbooks of the Society for Gen-
gl Systems Rescarch. Prominent among the exponcats
of genenal syt theary L K.
Bouiding, R W. Gerarg and J. G. Miller. For a more
skeptical view—perhaps too skepical inthe lght of the

{odels: their uses and limummns in L. ite, ed.,
The state of the social sciences, 66-83, Chicago, Univ. of
Chicago Press, 1956.

“ N. Wiener, Cybernetics, New York, Wiley, 1948. For
 imaginate forenng,see A, 1. Coka, Sements of
mathematical Dover Publications,
s b i 920 - Elemencs of piysecal

iology.

sis, and to analyze adaptiveness in terms of the
theory of selective information.’ The ideas of
feedback and information provide a frame of ref-
erence for viewing a wide range of situations,
just as do the ideas of evolution, or relativism, of
‘axiomatic method, and of operationalism.

In this essay I should like to report on some
things we have been leamning about particular
kinds of complex systems encountered in the be-
havioral sciences. The developments I shall dis-
cuss arose in the context of specific phenomena,
but the theoretical formulations themselves make
little reference to details of structure. Instead they
refer primarily to the complexity of the systems
under view without specifying the exact content
of that complexity. Because of their abstractness,
the theories may have relevance—application
‘would be too strong a term— to other kinds of
complex systems that are observed in the social,
biological, and physical sciences.

In recounting these developments, I shall avoid
technical detail, which can generally be found
elsewhere. I shall describe each theory in the par-
ticular context in which it arose. Then, I shall cite
some examples of complex systems, from areas
of science other than the initial application, to
which the theoretical framework appears rele-
vant. In doing so, I shall make reference to areas
of knowledge where 1 am not expert—perhaps
not even literate. I feel quite comfortable in doing
so0 before the members of this society, represent-
ing as it does the whole span of the scientific and
scholarly_endeavor. Collectively you will have
little difficulty, I am sure, in distinguishing in-
stances based on idle fancy or sheer ignorance
from instances that cast some light on the ways in
which complexity exhibits itself wherever it is
found in nature. I shall leave to you the final
judgment of relevance in your respective fields.

1 shall not undertake a formal definition of

* C. Shannon and W. Weaver, The mathematical the-
or of communication, Urbana, Univ, of llinois Press,
1949; W. R. Ashby, Design for a brain, New York,
Wiley, 1952.

A discipline of modularity

« Two ways to view a program:
The implementer's view (how to build it)
The client's view (how to use it)

+ It helps to apply these views to program parts:

— While implementing one part, consider yourself a client of

any other parts it depends on

— Try notto look at those other parts through an implementer's

eyes
Helps dampen interactions between parts

+ Formalized through the idea of a specification

A specification is a contract

A set of requirements agreed to by the user and the
manufacturer of the product

— Describes their expectations of each other

+ Facilitates simplicity via two-way isolation
— lIsolate client from implementation details
— Isolate implementer from how the part is used
— Discourages implicit, unwritten expectations

Facilitates change

— Reduces the “Medusa effect”: the specification, rather
than the code, gets “turned to stone” by client
dependencies

Isn’t the interface sufficient?

The interface defines the boundary between implementers and users:

public class List<E> {
public E get(int x) { return null; }
public void set(int x, E y){}
public void add(E) ({}
public void add(int, E) {}

public static <T> boolean isSub (List<T>, List<T>) {
return false;

}
}

Interface provides the syntax and types
But nothing about the behavior and effects
— Provides too little information to clients

Note: Code above is right concept but is not (completely) legal Java
— Parameters need names; no static interface methods before Java 8

Why not just read code?

static <T> boolean sub (List<T> src, List<T> part) ({
int part _index = 0;
for (T elt : src) {
if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {
return true;
}
} else {
part_index = 0;
}
}

return false;

}

Why are you better off with a specification?

Code is complicated

+ Code gives more detail than needed by client

+ Understanding or even reading every line of code is an
excessive burden

— Suppose you had to read source code of Java libraries to
use them

— Same applies to developers of different parts of the libraries

+ Client cares only about what the code does, not how it does it

Code is ambiguous

Code seems unambiguous and concrete
— But which details of code's behavior are essential, and which
are incidental?

+ Code invariably gets rewritten
— Client needs to know what they can rely on
+ What properties will be maintained over time?
+ What properties might be changed by future optimization,
improved algorithms, or bug fixes?
— Implementer needs to know what features the client depends
on, and which can be changed

Comments are essential

Most comments convey only an informal, general idea of what that the
code does:

// This method checks if "part" appears as a
// sub-sequence in "src"
static <T> boolean sub (List<T> src, List<T> part) {

Problem: ambiguity remains
— What if srec and part are both empty lists?
— When does the function return true?

From vague comments to specifications

* Roles of a specification:
— Client agrees to rely only on information in the description in
their use of the part
— Implementer of the part promises to support everything in
the description
+ Otherwise is perfectly at liberty

+ Sadly, much code lacks a specification
— Clients often work out what a method/class does in
ambiguous cases by running it and depending on the results
— Leads to bugs and programs with unclear dependencies,
reducing simplicity and flexibility

Recall the sublist example

static <T> boolean sub (List<T> src, List<T> part) ({
int part _index = 0;
for (T elt : src) {
if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {
return true;
}
} else {
part_index = 0;
}
}

return false;

A more careful description of sub

// Check whether “part” appears as a sub-sequence in “src”

needs to be given some caveats (why?):
// * src and part cannot be null
// * If src is empty list, always returns false
// * Results may be unexpected if partial matches
// can happen right before a real match; e.g.,

// 1list (1,2,1,3) will not be identified as a
// sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:
// This method scans the “src” list from beginning
// to end, building up a match for “part”, and
// resetting that match every time that...

A better approach

It’s better to simplify than to describe complexity!

Complicated description suggests poor design
— Rewrite sub to be more sensible, and easier to describe

// returns true iff possibly empty sequences A, B where
// src = A : part : B

// where “:” is sequence concatenation

static <T> boolean sub (List<T> src, List<T> part) ({

+ Mathematical flavor not always necessary, but often helps avoid
ambiguity

+ “Declarative” style is important: avoids reciting or depending on
operational/implementation details

The benefits of spec #1

+ The discipline of writing specifications changes the incentive
structure of coding

— Rewards code that is easy to describe and understand
— Punishes code that is hard to describe and understand
« Even if it is shorter or easier to write

+ If you find yourself writing complicated specifications, it is an
incentive to redesign
— In sub, code that does exactly the right thing may be slightly
slower than a hack that assumes no partial matches before
true matches, but cost of forcing client to understand the
details is too high

Writing specifications with Javadoc

+ Javadoc
— Sometimes can be daunting; get used to using it

+ Javadoc convention for writing specifications
— Method signature
— Text description of method
- @param: description of what gets passed in
- @return: description of what gets returned
- @throws: exceptions that may occur

Example: Javadoc for String.contains

public boolean contains (CharSequence s)

Returns true if and only if this string contains the
specified sequence of char values.

Parameters:

s- the sequence to search for
Returns:

true if this string contains s, false otherwise
Throws:

NullPointerException - if s is null

CSE 331 specifications

The precondition: constraints that hold before the method is called
(if not, all bets are off)

- @requires: spells out any obligations on client

The postcondition: constraints that hold after the method is called
(if the precondition held)
- @modifies: lists objects that may be affected by method; any
object not listed is guaranteed to be untouched
- @throws: lists possible exceptions and conditions under
which they are thrown (Javadoc uses this too)

Since: - Qeffects: gives guarantees on final state of modified objects
1.5 - Qreturn: describes return value (Javadoc uses this too)
Example 1 Example 2

static <T> int change(List<T> Ist, T oldelt, T newelt)
requires Ist, oldelt, and newelt are non-null.
oldelt occurs in Ist.
modifies Ist

effects chan%e the first occurrence of oldelt in Ist to newelt
& makes no other changes to Ist
returns the position of the element in Ist that was oldelt and

IS nOw newelt

static List<Integer> zipSum(List<Integer> Ist1, List<Integer> Ist2)

requires Ist1 and Ist2 are non-null.
Ist1 and Ist2 are the same size.

modifies none

effects none

returns a list of same size where the ith element is
the sum of the ith elements of Ist1 and Ist2

static <T> int change (List<T> 1st,
T oldelt, T newelt) ({
int i = 0;
for (T curr : 1lst) {
if (curr == oldelt) {
lst.set(newelt, i),
return i;

i=1i4+1;

return -1;

static List<Integer> zipSum(List<Integer> lstl
List<Integer> 1lst2) {
List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lstl.size(); i++) {
res.add(1lstl.get (i) + 1lst2.get(i));
}

return res;

Example 3

static void listAdd(List<Integer> Ist1, List<Integer> Ist2)
requires Ist1 and Ist2 are non-null.
Ist1 and Ist2 are the same size.
modifies Ist1
effects ith element of Ist2 is added to the ith element of Ist1
returns none

Example 4 (Watch out for bugs!)

static void uniquify(List<Integer> Ist)
requires 77?7

2?7
modifies ??7?
effects 2?7
returns 2?7

static void listAdd(List<Integer> 1lstl,
List<Integer> 1lst2) ({

for(int i = 0; i < 1lstl.size(); i++) {
1stl.set(i, 1lstl.get(i) + 1lst2.get(i));

static void uniquify(List<Integer> 1lst) {
for (int i=0; i < lst.size()-1; i++)
if (1st.get(i) == 1lst.get(i+1))
lst.remove (i) ;

Should requires clause be checked?

If the client calls a method without meeting the precondition, the
code is free to do anything

— Including pass corrupted data back

— ltis polite, nevertheless, to fail fast: to provide an immediate
error, rather than permitting mysterious bad behavior

Preconditions are common in “helper” methods/classes
— In public libraries, it’s friendlier to deal with all possible input

— Example: binary search would normally impose a pre-
condition rather than simply failing if list is not sorted. Why?

Rule of thumb: Check if cheap to do so
— Example: list has to be non-null 2 check
— Example: list has to be sorted = skip

Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if
— Every behavior of M is permitted by S
— “The behavior of M is a subset of S”

The statement “M is correct” is meaningless!
— Though often made!

If M does not satisfy S, either (or both!) could be “wrong”
— “One person’s feature is another person’s bug.”
— Usually better to change the program than the spec

The benefits of specs #2

Specification means that client doesn't need to look at
implementation

— So the code may not even exist yet!

Write specifications first, make sure system will fit together, and
then assign separate implementers to different modules

— Allows teamwork and parallel development
— Also helps with testing (future topic)

Comparing specifications

Occasionally, we need to compare different versions of a
specification (Why?)
— For that, talk about weaker and stronger specifications

A weaker specification gives greater freedom to the implementer

— If specification S, is weaker than S,,, then for any
implementation M,

* Msatisfies S, => M satisfies S,
+ but the opposite implication does not hold in general

Given two specifications, they may be incomparable
— Neither is weaker/stronger than the other
— Some implementations might still satisfy them both

Why compare specifications?

We wish to relate procedures to specifications
— Does the procedure satisfy the specification?
— Has the implementer succeeded?

We wish to compare specifications to one another
— Which specification (if either) is stronger?

— A procedure satisfying a stronger specification can be used

anywhere that a weaker specification is required
Substitutability principle

+ Accept at least as many inputs
Produce no more outputs

Example 1

int find(int[] a, int value) {
for (int i=0; i<a.length; i++) {
if (a[i]l==value)
return i;

}

return -1;
}
Specification A
— requires: value occurs in a
— returns: i such thata[i] = value

Specification B
— requires: value occurs in a
— returns: smallest i suchthata[i] = value

Example 2

int find(int[] a, int wvalue) {
for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}

return -1;

}

Specification A
— requires: value occurs in a
— returns: i such thata[i] = value

Specification C
— returns: i such that a[i] = value, or -1 if value is not in a

Stronger and weaker specifications

A stronger specification is
— Harder to satisfy (more constraints on the implementation)

— Easier to use (more guarantees, more predictable, client can
make more assumptions)

A weaker specification is
— Easier to satisfy (easier to implement, more implementations
satisfy it)
— Harder to use (makes fewer guarantees)

Strengthening a specification

Strengthen a specification by:
— Promising more — any or all of:
+ Effects clause harder to satisfy
+ Returns clause harder to satisfy
+ Fewer objects in modifies clause
» More specific exceptions (subclasses)
— Asking less of client
+ Requires clause easier to satisfy

Weaken a specification by:
— (Opposite of everything above)

“Strange” case: @throws

[Prior versions of course, including old exams, were clumsy/wrong
about this]

Compare:

S1:
@throws FooException if x<0
@return x+3

S2:
@return x+3

« These are incomparable because they promise different,
incomparable things when x<0

+ Both are sfrongerthan @requires x>=0; @return x+3

Which is better?

Stronger does not always mean better!
Weaker does not always mean better!

Strength of specification trades off:

Usefulness to client

Ease of simple, efficient, correct implementation
Promotion of reuse and modularity

Clarity of specification itself

“It depends”

More formal stronger/weaker

A specification is a logical formula
— S1 stronger than S2 if S1 implies S2
— From implication all things follow:
+ Example: S1 stronger if requires is weaker
+ Example: S1 stronger if returns is stronger

As in all logic (cf. CSE311), two rigorous ways to check implication

— Convert entire specifications to logical formulas and use logic
rules to check implication (e.g., P1 A P2 = P2)

— Check every behavior described by stronger also described by
the other

« CSE311: truth tables
- CSE331: transition relations

Transition relations

There is a program state before a method call and after

— All memory, values of all parameters/result, whether
exception happened, etc.

A specification “means” a set of pairs of program states
— The legal pre/post-states
— This is the transition relation defined by the spec
+ Could be infinite
+ Could be multiple legal outputs for same input

Stronger specification means the transition relation is a subset

Note: Transition relations often are infinite in size

