Lecture 2

Formal Reasoning
Announcements

Homework 0 due Friday at 5 PM
 • Heads up: no late days for this one!

Homework 1 due Wednesday at 11 PM
 • Using program logic sans loops
Formal Reasoning
Formalization and Reasoning

Geometry gives us incredible power
- Lets us represent shapes symbolically
- Provides basic truths about these shapes
- Gives rules to combine small truths into bigger truths

Geometric proofs often establish *general* truths

\[a^2 + b^2 = c^2 \]
\[p + q + r = 180 \]
Formalization and Reasoning

Formal reasoning provides tradeoffs
+ Establish truth for many (possibly infinite) cases
+ Know properties ahead of time, before object exists
- Requires abstract reasoning and careful thinking
- Need basic truths and rules for combining truths

Today: develop formal reasoning for programs
• What is true about a program’s state as it executes?
• How do basic constructs change what’s true?
• Two flavors of reasoning: forward and backward
Reasoning About Programs

What is true of a program’s state as it executes?

• Given initial assumption or final goal

Examples:

• If \(x > 0 \) initially, then \(y == 0 \) when loop exits
• Contents of array \(arr \) refers to are sorted
• Except at one program point, \(x + y == z \)
• For all instances of \(\text{Node n} \),
 \[
 n.next == \text{null} \lor n.next.prev == n
 \]
• …
Why Reason About Programs?

Essential complement to testing
 • Testing shows specific result for a specific input

Proof shows general result for entire class of inputs
 • Guarantee code works for any valid input
 • Can only prove correct code, proving uncovers bugs
 • Provides deeper understanding of why code is correct

Precisely stating assumptions is essence of spec
 • “Callers must not pass null as an argument”
 • “Callee will always return an unaliased object”
Why Reason About Programs?

“Today a usual technique is to make a program and then to test it. While program testing can be a very effective way to show the presence of bugs, it is hopelessly inadequate for showing their absence. The only effective way to raise the confidence level of a program significantly is to give a convincing proof of its correctness.”

-- Dijkstra (1972)
Our Approach

Hoare Logic, an approach developed in the 70’s
- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for *assign, sequence, if* in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops
How Does This Get Used?

Current practitioners rarely use Hoare logic explicitly
 • For simple program snippets, often overkill
 • For full language features (aliasing) gets complex
 • Shines for developing loops with subtle invariants
 • See Homework 0, Homework 2

Ideal for introducing program reasoning foundations
 • How does logic “talk about” program states?
 • How can program execution “change what’s true”?
 • What do “weaker” and “stronger” mean in logic?

All essential for specifying library interfaces!
Forward Reasoning Example

Suppose we initially know (or assume) \(w > 0 \)

// w > 0
x = 17;
// w > 0 ∧ x == 17
y = 42;
// w > 0 ∧ x == 17 ∧ y == 42
z = w + x + y;
// w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
...

Then we know various things after, e.g., \(z > 59 \)
Suppose we want $z < 0$ at the end

```plaintext
// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0
```

Then initially we need $w < -59$
Forward vs. Backward

Forward Reasoning
• Determine what follows from initial assumptions
• Useful for ensuring an invariant is maintained

Backward Reasoning
• Determine sufficient conditions for a certain result
• Desired result: assumptions need for correctness
• Undesired result: assumptions needed to trigger bug
Forward vs. Backward

Forward Reasoning
• Simulates the code for many inputs at once
• May feel more natural
• Introduces (many) potentially irrelevant facts

Backward Reasoning
• Often more useful, shows how each part affects goal
• May feel unnatural until you have some practice
• Powerful technique used frequently in research
Conditionals

// initial assumptions
if(...) {
 ... // also know condition is true
} else {
 ... // also know condition is false
}
// either branch could have executed

Key ideas:
1. The precondition for each branch includes information about the result of the condition
2. The overall postcondition is the disjunction (“or”) of the postconditions of the branches
Conditional Example (Fwd)

```c
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
    // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
    z = x;
    // ... ∧ z > 0
} else {
    // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
    z = x + 1;
    // ... ∧ z == 1
}
// ( ... ∧ z > 0) ∨ ( ... ∧ z == 1) (so z > 0)
```
Our Approach

Hoare Logic, an approach developed in the 70’s
 • Focus on core: assignments, conditionals, loops
 • Omit complex constructs like objects and methods

Today: the basics for *assign, sequence, if* in 3 steps

1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops
Notation and Terminology

Precondition: “assumption” before some code

Postcondition: “what holds” after some code

Conventional to write pre/postconditions in “{...}”

\[
\{ \ w \ < \ -59 \ \} \\
\text{x = 17;} \\
\{ \ w + x \ < \ -42 \ \}
\]
Notation and Terminology

Note the “{ ... }” notation is NOT Java

Within pre/postcondition “=” means mathematical equality, like Java’s “==” for numbers

\[
\{ \ w > 0 \ \&\& \ x = 17 \ \}\ \\
y = 42; \\
\{ \ w > 0 \ \&\& \ x = 17 \ \&\& \ y = 42 \ \}\]
Assertion Semantics (Meaning)

An assertion (pre/postcondition) is a logical formula that can refer to program state (variables)

Given a variable, a program state tells you its value
 • Or the value for any expression with no side effects

An assertion holds on a program state if evaluating the assertion using the program state produces true
 • An assertion represents the set of state for which it holds
Hoare Triples

A *Hoare triple* is code wrapped in two assertions

\[
\{ P \} \quad S \quad \{ Q \}
\]

- \(P\) is the precondition
- \(S\) is the code (statement)
- \(Q\) is the postcondition

Hoare triple \(\{P\} \quad S \quad \{Q\}\) is *valid* if:

- For all states where \(P\) holds, executing \(S\) always produces a state where \(Q\) holds
- “If \(P\) true before \(S\), then \(Q\) must be true after”
- Otherwise the triple is *invalid*
Hoare Triple Examples

Valid or invalid?
 • Assume all variables are integers without overflow

\[
\begin{align*}
\{x \neq 0\} & \quad y = x^*x; \quad \{y > 0\} \quad \text{valid} \\
\{z \neq 1\} & \quad y = z^*z; \quad \{y \neq z\} \quad \text{invalid} \\
\{x \geq 0\} & \quad y = 2^*x; \quad \{y > x\} \quad \text{invalid} \\
\{\text{true}\} & \quad (\text{if}(x > 7)\{ y=4; \}\text{else}\{ y=3; \}) \quad \{y < 5\} \quad \text{valid} \\
\{true\} & \quad (x = y; \ z = x;) \quad \{y=z\} \quad \text{valid} \\
\{x=7 \land y=5\} & \quad \text{invalid} \\
(tmp=x; \ x=tmp; \ y=x;) & \quad \{y=7 \land x=5\} \\
\end{align*}
\]
Aside: assert in Java

A Java assertion is a statement with a Java expression

```java
assert (x > 0 && y < x);
```

Similar to our assertions

- Evaluate with program state to get true or false

Different from our assertions

- Java assertions work at run-time
- Raise an exception if this execution violates assert
- … unless assertion checking disable (discuss later)

This week: we are reasoning about the code statically (before run-time), not checking a particular input
The General Rules

So far, we decided if a Hoare trip was valid by using our informal understanding of programming constructs.

Now we’ll show a general rule for each construct:

- The basic rule for assignments (they change state!)
- The rule to combine statements in a sequence
- The rule to combine statements in a conditional
- The rule to combine statements in a loop [next time]
Basic Rule: Assignment

\[
\{ \text{P} \} \; x = e; \; \{ \text{Q} \}
\]

Let \(\text{Q'} \) be like \(\text{Q} \) except replace \(x \) with \(e \)

Triple is valid if:

For all states where \(P \) holds, \(Q' \) also holds

- That is, \(P \) implies \(Q' \), written \(P \implies Q' \)

Example:

\[
\{ \; z > 34 \; \} \; y = z + 1; \; \{ \; y > 1 \; \}
\]

- \(Q' \) is \(\{ \; z + 1 > 1 \; \} \)
Combining Rule: Sequence

\[
\{ P \} \; S1; \; S2 \; \{ Q \}
\]

Triple is valid iff there is an assertion \(R \) such that both the following are valid:

- \(\{ P \} \; S1 \; \{ R \} \)
- \(\{ R \} \; S2 \; \{ Q \} \)

Example:

\[
\{ \; z \geq 1 \; \}
\]
\[
y = z + 1;
\]
\[
w = y * y;
\]
\[
\{ \; w > y \; \}
\]

Let \(R \) be \(\{ y > 1 \} \)

1. Show \(\{ z \geq 1 \} \; y = z + 1 \; \{ y > 1 \} \)
 Use basic assign rule:
 \[
z \geq 1 \; \text{implies} \; z + 1 > 1
 \]

2. Show \(\{ y > 1 \} \; w = y * y \; \{ w > y \} \)
 Use basic assign rule:
 \[
y > 1 \; \text{implies} \; y * y > y
 \]
Combining Rule: Conditional

\{ P \} \text{ if}(b) \text{ S1 else S2 } \{ Q \}

Triple is valid iff there are assertions \(Q_1\), \(Q_2\) such that:

1. \(\{ P \land b \} \text{ s1 } \{ Q_1 \} \) is valid
2. \(\{ P \land \neg b \} \text{ s2 } \{ Q_2 \} \) is valid
3. \(Q_1 \lor Q_2\) implies \(Q\)

Example:

\{ \text{true} \} \text{ if}(x > 7) \text{ y = x; else } \text{ y = 20; } \{ \text{y > 5} \}

Let \(Q_1\) be \(\{y > 7\}\) and \(Q_2\) be \(\{y = 20\}\)

- Note: other choices work too!

1. Show \(\{\text{true } \land x > 7\} \ \text{ y = x } \ {y > 7}\)
2. Show \(\{\text{true } \land x \leq 7\} \ \text{ y = 20} \ {y = 20}\)
3. Show \(y > 7 \lor y = 20\) implies \(y > 5\)
Our Approach

Hoare Logic, an approach developed in the 70’s

- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for *assign, sequence, if* in 3 steps

1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops
Weaker vs. Stronger

If P_1 implies P_2 (written $P_1 \implies P_2$) then:

- P_1 is stronger than P_2
- P_2 is weaker than P_1

Whenever P_1 holds, P_2 is guaranteed to hold

- So it is at least as difficult to satisfy P_1 as P_2
- P_1 holds on a subset of the states where P_2 holds
- P_1 puts more constraints on program states
- P_1 is a “stronger” set of obligations / requirements
Weaker vs. Stronger Examples

\[x = 17 \] is stronger than \[x > 0 \]

\[x \text{ is prime} \] is neither stronger nor weaker than \[x \text{ is odd} \]

\[x \text{ is prime} \land x > 2 \] is stronger than \[x \text{ is odd} \land x > 2 \]
Strength and Hoare Logic

Suppose:

- \{P\} S \{Q\} and
- \(P\) is weaker than some \(P_1\) and
- \(Q\) is stronger than some \(Q_1\)

Then \(\{P_1\} S \{Q\}\) and \(\{P\} S \{Q_1\}\) and \(\{P_1\} S \{Q_1\}\)

Example:

- \(P\) is \(x \geq 0\)
- \(P_1\) is \(x > 0\)
- \(S\) is \(y = x+1\)
- \(Q\) is \(y > 0\)
- \(Q_1\) is \(y \geq 0\)
Strength and Hoare Logic

For backward reasoning, if we want $\{P\} S \{Q\}$, we could:

1. Show $\{P_1\} S \{Q\}$, then
2. Show $P \Rightarrow P_1$

Better, we could just show $\{P_2\} S \{Q\}$ where P_2 is the weakest precondition of Q for S

- Weakest means the most lenient assumptions such that Q will hold after executing S
- Any precondition P such that $\{P\} S \{Q\}$ is valid will be stronger than P_2, i.e., $P \Rightarrow P_2$

Amazing (?) : Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$

- Like our general rules with backward reasoning
Weakest Precondition

\(\text{wp}(x = e, Q) \) is \(Q \) with each \(x \) replaced by \(e \)
- Example: \(\text{wp}(x = y*y ; , x > 4) \) is \(y*y > 4 \), i.e., \(|y| > 2 \)

\(\text{wp}(S_1 ; S_2, Q) \) is \(\text{wp}(S_1, \text{wp}(S_2,Q)) \)
- i.e., let \(R \) be \(\text{wp}(S_2,Q) \) and overall \(\text{wp} \) is \(\text{wp}(S_1,R) \)
- Example: \(\text{wp}((y=x+1 ; \ z=y+1;) , z > 2) \) is
 \((x + 1) +1 > 2 \), i.e., \(x > 0 \)

\(\text{wp}(\text{if } b \ S_1 \ \text{else } S_2, Q) \) is this logical formula:

\((b \land \text{wp}(S_1,Q)) \lor (!b \land \text{wp}(S2,Q)) \)
- In any state, \(b \) will evaluate to either true or false...
- You can sometimes then simplify the result
Simple Examples

If S is $x = y \times y$ and Q is $x > 4$, then $wp(S,Q)$ is $y \times y > 4$, i.e., $|y| > 2$.

If S is $y = x + 1; z = y - 3;$ and Q is $z = 10$, then $wp(S,Q)$...

$= wp(y = x + 1; z = y - 3; , z = 10)$
$= wp(y = x + 1; , wp(z = y - 3; , z = 10))$
$= wp(y = x + 1; , y - 3 = 10)$
$= wp(y = x + 1; , y = 13)$
$= x + 1 = 13$
$= x = 12$
Bigger Example

\[S \text{ is } \begin{cases} \text{if } (x < 5) \{ \\ x = x \times x; \\ \} \text{ else } \{ \\ x = x+1; \\ \} \end{cases} \]

\[Q \text{ is } x \geq 9 \]

\[
wp(S, x \geq 9) \\
= (x < 5 \land wp(x = x \times x;, x \geq 9)) \lor (x \geq 5 \land wp(x = x+1;, x \geq 9))
\]

\[
= (x < 5 \land x \times x \geq 9) \lor (x \geq 5 \land x+1 \geq 9)
\]

\[
= (x \leq -3) \lor (x \geq 3 \land x < 5) \lor (x \geq 8)
\]
Conditionals Review

Forward reasoning

{P}

if B

{P ∧ B}

S1

{Q1}

else

{P ∧ !B}

S2

{Q2}

{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q)) ∨ (!B ∧ wp(S2, Q)) }

if B

{wp(S1, Q)}

S1

{Q}

else

{wp(S2, Q)}

S2

{Q}

{Q}
“Correct”

If $\text{wp}(S, Q)$ is true, then executing S will always produce a state where Q holds, since true holds for every program state.
Oops! Forward Bug…

With forward reasoning, our intuitive rule for assignment is wrong:

- Changing a variable can affect other assumptions

Example:

```plaintext
{true}
w = x+y;
{w = x + y;}
x = 4;
{w = x + y \land x = 4}
y = 3;
{w = x + y \land x = 4 \land y = 3}
```

But clearly we do not know \(w = 7 \) (!!!)
Fixing Forward Assignment

When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different “fresh” variable, so that you refer to the “old contents”

Corrected example:

```plaintext
{true}
w = x + y;
{w = x + y;}
x = 4;
{w = x1 + y ∧ x = 4}
y = 3;
{w = x1 + y1 ∧ x = 4 ∧ y = 3}
```
Useful Example: Swap

Name initial contents so we can refer to them in the post-condition

Just in the formulas: these “names” are not in the program

Use these extra variables to avoid “forgetting” “connections”

\[
\begin{align*}
\{ & x = x_pre \land y = y_pre \\
& \text{tmp} = x; \\
& \{ x = x_pre \land y = y_pre \land \text{tmp}=x \} \\
x = y; \\
& \{ x = y \land y = y_pre \land \text{tmp}=x_pre \} \\
y = \text{tmp}; \\
& \{ x = y_pre \land y = \text{tmp} \land \text{tmp}=x_pre \}
\end{align*}
\]