Formal Reasoning

Announcements

Homework 0 due Friday at 5 PM
 • Heads up: no late days for this one!

Homework 1 due Wednesday at 11 PM
 • Using program logic sans loops

Formalization and Reasoning

Geometry gives us incredible power
 • Lets us represent shapes symbolically
 • Provides basic truths about these shapes
 • Gives rules to combine small truths into bigger truths

Geometric proofs often establish general truths

\[
a^2 + b^2 = c^2\]
\[
p + q + r = 180\]
Formalization and Reasoning

Formal reasoning provides tradeoffs

- Establish truth for many (possibly infinite) cases
- Know properties ahead of time, before object exists
- Requires abstract reasoning and careful thinking
- Need basic truths and rules for combining truths

Today: develop formal reasoning for programs

- What is true about a program’s state as it executes?
- How do basic constructs change what’s true?
- Two flavors of reasoning: *forward* and *backward*

Reasoning About Programs

What is true of a program’s state as it executes?

- Given initial assumption or final goal

Examples:

- If \(x > 0 \) initially, then \(y == 0 \) when loop exits
- Contents of array \(arr \) refers to are sorted
- Except at one program point, \(x + y == z \)
- For all instances of \(\text{Node} \ n \),
 \[
 n.next == \text{null} \lor n.next.prev == n
 \]
- ...

Why Reason About Programs?

Essential complement to *testing*

- Testing shows specific result for a specific input

Proof shows general result for entire class of inputs

- *Guarantee* code works for *any* valid input
- Can only prove correct code, proving uncovers bugs
- Provides deeper understanding of why code is correct

Precisely stating assumptions is essence of spec

- “Callers must not pass \text{null} as an argument”
- “Callee will always return an unaliased object”

“Today a usual technique is to make a program and then to test it. While program testing can be a very effective way to show the presence of bugs, it is hopelessly inadequate for showing their absence. The only effective way to raise the confidence level of a program significantly is to give a convincing proof of its correctness.”

-- Dijkstra (1972)
Our Approach

Hoare Logic, an approach developed in the 70’s
- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

How Does This Get Used?

Current practitioners rarely use Hoare logic explicitly
- For simple program snippets, often overkill
- For full language features (aliasing) gets complex
- Shines for developing loops with subtle invariants
 - See Homework 0, Homework 2

Ideal for introducing program reasoning foundations
- How does logic “talk about” program states?
- How can program execution “change what’s true”?
- What do “weaker” and “stronger” mean in logic?

All essential for specifying library interfaces!

Forward Reasoning Example

Suppose we initially know (or assume) \(w > 0 \)

```plaintext
// w > 0
x = 17;
// w > 0 ∧ x == 17
y = 42;
// w > 0 ∧ x == 17 ∧ y == 42
z = w + x + y;
// w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
...
```

Then we know various things after, e.g., \(z > 59 \)

Backward Reasoning Example

Suppose we want \(z < 0 \) at the end

```plaintext
// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0
```

Then initially we need \(w < -59 \)
Forward vs. Backward

Forward Reasoning
• Determine what follows from initial assumptions
• Useful for ensuring an invariant is maintained

Backward Reasoning
• Determine sufficient conditions for a certain result
• Desired result: assumptions need for correctness
• Undesired result: assumptions needed to trigger bug

Conditionals

```c
// initial assumptions
if(...) {
    ...
} else {
    ...
}
// either branch could have executed
```

Key ideas:
1. The precondition for each branch includes information about the result of the condition
2. The overall postcondition is the disjunction (“or”) of the postconditions of the branches

Conditional Example (Fwd)

```c
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
    // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
    z = x;
    // ...
    ∧ z > 0
} else {
    // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
    z = x + 1;
    // ...
    ∧ z == 1
}
// ( ...
∧ z > 0) ∨ (...
∧ z == 1)  (so z > 0)
```
Our Approach

Hoare Logic, an approach developed in the 70’s
- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for *assign, sequence, if* in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

Notation and Terminology

Precondition: “assumption” before some code

Postcondition: “what holds” after some code

Conventional to write pre/postconditions in “{...}”

\{ w < -59 \}
\x = 17;
\{ w + x < -42 \}

Notation and Terminology

Note the “{...}” notation is NOT Java

Within pre/postcondition “=” means *mathematical equality*, like Java’s “==” for numbers

\{ w > 0 \land x = 17 \}
\y = 42;
\{ w > 0 \land x = 17 \land y = 42 \}

Assertion Semantics (Meaning)

An *assertion* (pre/postcondition) is a logical formula that can refer to program state (variables)

Given a variable, a *program state* tells you its value
- Or the value for any expression with no side effects

An assertion *holds* on a program state if evaluating the assertion using the program state produces *true*
- An assertion represents the set of state for which it holds
Hoare Triples

A *Hoare triple* is code wrapped in two assertions

```
{ P }  S  { Q }
```

- **P** is the precondition
- **S** is the code (statement)
- **Q** is the postcondition

Hoare triple \{P\} S \{Q\} is *valid* if:

- For all states where \(P \) holds, executing \(S \) always produces a state where \(Q \) holds
- “If \(P \) true before \(S \), then \(Q \) must be true after”
- Otherwise the triple is *invalid*

Hoare Triple Examples

Valid or invalid?

- \{x \neq 0\} y = x*x; {y > 0}\ valid
- \{z \neq 1\} y = z*z; \{y \neq z\}\ invalid
- \{x \geq 0\} y = 2*x; \{y > x\}\ invalid
- \{true\} \(if(x > 7)\{ y=4; \} else\{ y=3; \})\ \{y < 5\}\ valid
- \{true\} \(x = y;\ z = x;\)\ \{y=z\}\ valid
- \{x=7 \land y=5\} \(tmp=x;\ x=tmp;\ y=x;\)\ invalid
- \{y=7 \land x=5\}

Aside: assert in Java

A Java assertion is a statement with a Java expression

```
assert (x > 0 && y < x);
```

Similar to our assertions

- Evaluate with program state to get true or false

Different from our assertions

- Java assertions work at *run-time*
- Raise an exception if this execution violates assert
- ... unless assertion checking disable (discuss later)

This week: we are *reasoning* about the code *statically* (before run-time), not checking a particular input

The General Rules

So far, we decided if a Hoare trip was valid by using our informal understanding of programming constructs

Now we’ll show a general rule for each construct

- The basic rule for assignments (they change state!)
- The rule to combine statements in a sequence
- The rule to combine statements in a conditional
- The rule to combine statements in a loop [next time]
Basic Rule: Assignment

\[
\{ P \} \ x = e; \ \{ Q \}
\]

Let \(Q' \) be like \(Q \) except replace \(x \) with \(e \)

Triple is valid if:
For all states where \(P \) holds, \(Q' \) also holds
• That is, \(P \) implies \(Q' \), written \(P \implies Q' \)

Example: \(\{ z > 34 \} \ y = z + 1; \ \{ y > 1 \} \)
• \(Q' \) is \(\{ z + 1 > 1 \} \)

Combining Rule: Sequence

\[
\{ P \} S1; S2 \ { Q \}
\]

Triple is valid iff there is an assertion \(R \) such that both the following are valid:
• \(\{ P \} S1 \ \{ R \} \)
• \(\{ R \} S2 \ { Q \} \)

Example:
\[
\{ z \geq 1 \} \ y = z + 1; \ w = y \times y; \{ w > y \}
\]
Let \(R \) be \(\{ y > 1 \} \)
1. Show \(\{ z \geq 1 \} \ y = z + 1 \ \{ y > 1 \} \)
 Use basic assign rule:
 \(z \geq 1 \) implies \(z + 1 > 1 \)
2. Show \(\{ y > 1 \} \ w = y \times y \ \{ w > y \} \)
 Use basic assign rule:
 \(y > 1 \) implies \(y \times y > y \)

Combining Rule: Conditional

\[
\{ P \} \text{if}(b) S1 \text{ else } S2 \ \{ Q \}
\]

Triple is valid iff there are assertions \(Q1, Q2 \) such that:
• \(\{ P \land \neg b \} S1 \ \{ Q1 \} \) is valid
• \(\{ P \land b \} S2 \ \{ Q2 \} \) is valid
• \(Q1 \
\lor Q2 \implies Q \)

Example:
\[
\{ \text{true} \} \ \text{if}(x > 7) \text{ y = } x; \text{ else } \text{ y = 20; } \ \{ y > 5 \}
\]
Let \(Q1 \) be \(\{ y > 7 \} \) and \(Q2 \) be \(\{ y = 20 \} \)
• Note: other choices work too!
1. Show \(\{ \text{true} \land \neg x > 7 \} \ y = x \ \{ y > 7 \} \)
2. Show \(\{ \text{true} \land x \leq 7 \} \ y = 20 \ \{ y = 20 \} \)
3. Show \(y > 7 \land y = 20 \implies y > 5 \)

Our Approach

Hoare Logic, an approach developed in the 70’s
• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops
Weaker vs. Stronger

If P_1 implies P_2 (written $P_1 \Rightarrow P_2$) then:
- P_1 is stronger than P_2
- P_2 is weaker than P_1

Whenever P_1 holds, P_2 is guaranteed to hold
- So it is at least as difficult to satisfy P_1 as P_2
- P_1 holds on a subset of the states where P_2 holds
- P_1 puts more constraints on program states
- P_1 is a “stronger” set of obligations / requirements

Weaker vs. Stronger Examples

$x = 17$ is stronger than $x > 0$

x is prime is neither stronger nor weaker than x is odd

x is prime $\land\ x > 2$ is stronger than x is odd $\land\ x > 2$

...

Strength and Hoare Logic

Suppose:
- $\{P\} S \{Q\}$ and
- P is weaker than some P_1 and
- Q is stronger than some Q_1

Then $\{P_1\} S \{Q_1\}$ and $\{P\} S \{Q_1\}$ and $\{P_1\} S \{Q_1\}$

Example:
- P is $x >= 0$
- P_1 is $x > 0$
- S is $y = x+1$
- Q is $y > 0$
- Q_1 is $y >= 0$

“Wiggle Room”

Strength and Hoare Logic

For backward reasoning, if we want $\{P\} S \{Q\}$, we could:
1. Show $\{P_1\} S \{Q\}$, then
2. Show $P \Rightarrow P_1$

Better, we could just show $\{P_2\} S \{Q\}$ where P_2 is the weakest precondition of Q for S
- Weakest means the most lenient assumptions such that Q will hold after executing S
- Any precondition P such that $\{P\} S \{Q\}$ is valid will be stronger than P_2, i.e., $P \Rightarrow P_2$

Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$
- Like our general rules with backward reasoning
Weakest Precondition

\[\text{wp}(x = e, Q) \text{ is } Q \text{ with each } x \text{ replaced by } e \]

- Example: \(\text{wp}(x = y*y; x > 4) \) is \(y*y > 4 \), i.e., \(|y| > 2 \)

\[\text{wp}(S_1; S_2, Q) \text{ is } \text{wp}(S_1, \text{wp}(S_2, Q)) \]

- i.e., let \(R \) be \(\text{wp}(S_2, Q) \) and overall \(\text{wp} \) is \(\text{wp}(S_1, R) \)

- Example: \(\text{wp}((x=x+1; z=y+1;), z > 2) \) is \((x + 1) + 1 > 2 \), i.e., \(x > 0 \)

\[\text{wp}(\text{if } b \text{ else } S_2, Q) \text{ is this logical formula: } (b \land \text{wp}(S_1, Q)) \lor (!b \land \text{wp}(S_2, Q)) \]

- In any state, \(b \) will evaluate to either true or false...

- You can sometimes then simplify the result

Simple Examples

If \(S \) is \(x = y*y \) and \(Q \) is \(x > 4 \), then \(\text{wp}(S, Q) \) is \(y*y > 4 \), i.e., \(|y| > 2 \)

If \(S \) is \(y = x + 1; z = y - 3; \) and \(Q \) is \(z = 10 \), then \(\text{wp}(S, Q) \)...

= \(\text{wp}(y = x + 1; z = y - 3; , z = 10) \)
= \(\text{wp}(y = x + 1; , wp(z = y - 3; , z = 10)) \)
= \(\text{wp}(y = x + 1; , y-3 = 10) \)
= \(\text{wp}(y = x + 1; , y = 13) \)
= \(x+1 = 13 \)
= \(x = 12 \)

Bigger Example

\[S \text{ is if } (x < 5) \{ x = x*x; \} \text{ else } \{ x = x+1; \} \]

\(Q \text{ is } x >= 9 \)

\[\text{wp}(S, x >= 9) = (x < 5 \land \text{wp}(x = x*x; , x >= 9)) \lor (x >= 5 \land \text{wp}(x = x+1; , x >= 9)) \]

\[= (x <= -3) \lor (x >= 3 \land x < 5) \lor (x >= 8) \]

\[\text{Conditionals Review} \]

Forward reasoning

\[
\begin{align*}
\{ P \} \\
\text{if } B \\
\{ P \land B \} \\
S_1 \\
\{ Q_1 \} \\
\text{else} \\
\{ P \land \neg B \} \\
S_2 \\
\{ Q_2 \} \\
\{ Q_1 \lor Q_2 \}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{ (B \land \text{wp}(S_1, Q)) \lor (!B \land \text{wp}(S_2, Q)) \} \\
\text{if } B \\
\{ \text{wp}(S_1, Q) \} \\
S_1 \\
\{ Q \} \\
\text{else} \\
\{ \text{wp}(S_2, Q) \} \\
S_2 \\
\{ Q \} \\
\{ Q \}
\end{align*}
\]
“Correct”

If $\text{wp}(S, Q)$ is true, then executing S will always produce a state where Q holds, since true holds for every program state.

Oops! Forward Bug…

With forward reasoning, our intuitive rule for assignment is wrong:

- Changing a variable can affect other assumptions

Example:

```
{true}
  w = x + y;
  {w = x + y;}
  x = 4;
  {w = x + y ∧ x = 4}
  y = 3;
  {w = x + y ∧ x = 4 ∧ y = 3}
```

But clearly we do not know $w = 7$ (!!!)

Fixing Forward Assignment

When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different “fresh” variable, so that you refer to the “old contents”

Corrected example:

```
{true}
  w = x + y;
  {w = x + y;}
  x = 4;
  {w = x1 + y ∧ x = 4}
  y = 3;
  {w = x1 + y1 ∧ x = 4 ∧ y = 3}
```

Useful Example: Swap

Name initial contents so we can refer to them in the post-condition

Just in the formulas: these “names” are not in the program

Use these extra variables to avoid “forgetting” “connections”

```
{x = x_pre ∧ y = y_pre}
  tmp = x;
  {x = x_pre ∧ y = y_pre ∧ tmp=x}
  x = y;
  {x = y ∧ y = y_pre ∧ tmp=x_pre}
  y = tmp;
  {x = y_pre ∧ y = tmp ∧ tmp=x_pre}
```