
Zach Tatlock / Spring 2018

CSE 331
Software Design and Implementation

Lecture 2
Formal Reasoning

Announcements
Homework 0 due Friday at 5 PM

• Heads up: no late days for this one!

Homework 1 due Wednesday at 11 PM
• Using program logic sans loops

Formal
Reasoning

Formalization and Reasoning

Geometry gives us incredible power
• Lets us represent shapes symbolically
• Provides basic truths about these shapes
• Gives rules to combine small truths into bigger truths

Geometric proofs often establish general truths

p
q

r
a c

b
a2 + b2 = c2 p + q + r = 180

Formalization and Reasoning

Formal reasoning provides tradeoffs
+ Establish truth for many (possibly infinite) cases
+ Know properties ahead of time, before object exists
- Requires abstract reasoning and careful thinking
- Need basic truths and rules for combining truths

Today: develop formal reasoning for programs
• What is true about a program’s state as it executes?
• How do basic constructs change what’s true?
• Two flavors of reasoning: forward and backward

Reasoning About Programs
What is true of a program’s state as it executes?

• Given initial assumption or final goal

Examples:
• If x > 0 initially, then y == 0 when loop exits
• Contents of array arr refers to are sorted
• Except at one program point, x + y == z
• For all instances of Node n,

n.next == null \/ n.next.prev == n
• …

Why Reason About Programs?
Essential complement to testing

• Testing shows specific result for a specific input

Proof shows general result for entire class of inputs
• Guarantee code works for any valid input
• Can only prove correct code, proving uncovers bugs
• Provides deeper understanding of why code is correct

Precisely stating assumptions is essence of spec
• “Callers must not pass null as an argument”
• “Callee will always return an unaliased object”

Why Reason About Programs?
“Today a usual technique is to make a program and
then to test it. While program testing can be a very
effective way to show the presence of bugs, it is
hopelessly inadequate for showing their absence.
The only effective way to raise the confidence level
of a program significantly is to give a convincing
proof of its correctness. ”

-- Dijkstra (1972)

Our Approach
Hoare Logic, an approach developed in the 70’s

• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

How Does This Get Used?
Current practitioners rarely use Hoare logic explicitly

• For simple program snippets, often overkill
• For full language features (aliasing) gets complex
• Shines for developing loops with subtle invariants

• See Homework 0, Homework 2

Ideal for introducing program reasoning foundations
• How does logic “talk about” program states?
• How can program execution “change what’s true”?
• What do “weaker” and “stronger” mean in logic?

All essential for specifying library interfaces!

Forward Reasoning Example

Suppose we initially know (or assume) w > 0

// w > 0
x = 17;
// w > 0 ∧ x == 17
y = 42;
// w > 0 ∧ x == 17 ∧ y == 42
z = w + x + y;
// w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
…

Then we know various things after, e.g., z > 59

Backward Reasoning Example

Suppose we want z < 0 at the end

// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0

Then initially we need w < -59

Forward vs. Backward

Forward Reasoning
• Determine what follows from initial assumptions
• Useful for ensuring an invariant is maintained

Backward Reasoning
• Determine sufficient conditions for a certain result
• Desired result: assumptions need for correctness
• Undesired result: assumptions needed to trigger bug

Forward vs. Backward

Forward Reasoning
• Simulates the code for many inputs at once
• May feel more natural
• Introduces (many) potentially irrelevant facts

Backward Reasoning
• Often more useful, shows how each part affects goal
• May feel unnatural until you have some practice
• Powerful technique used frequently in research

Conditionals

Key ideas:
1. The precondition for each branch includes

information about the result of the condition
2. The overall postcondition is the disjunction (“or”) of

the postconditions of the branches

// initial assumptions
if(...) {

... // also know condition is true
} else {

... // also know condition is false
}
// either branch could have executed

Conditional Example (Fwd)
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {

// x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
z = x;
// … ∧ z > 0

} else {
// x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
z = x + 1;
// … ∧ z == 1

}
// (… ∧ z > 0) ∨ (… ∧ z == 1) (so z > 0)

Our Approach
Hoare Logic, an approach developed in the 70’s

• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

Notation and Terminology

Precondition: “assumption” before some code

Postcondition: “what holds” after some code

Conventional to write pre/postconditions in “{…}”
{ w < -59 }
x = 17;
{ w + x < -42 }

Notation and Terminology

Note the “{...}” notation is NOT Java

Within pre/postcondition “=” means mathematical
equality, like Java’s “==” for numbers

{ w > 0 /\ x = 17 }
y = 42;
{ w > 0 /\ x = 17 /\ y = 42 }

Assertion Semantics (Meaning)
An assertion (pre/postcondition) is a logical formula
that can refer to program state (variables)

Given a variable, a program state tells you its value
• Or the value for any expression with no side effects

An assertion holds on a program state if evaluating
the assertion using the program state produces true

• An assertion represents the set of state for which it holds

Hoare Triples
A Hoare triple is code wrapped in two assertions

{ P } S { Q }

• P is the precondition
• S is the code (statement)
• Q is the postcondition

Hoare triple {P} S {Q} is valid if:
• For all states where P holds, executing S always

produces a state where Q holds
• “If P true before S, then Q must be true after”
• Otherwise the triple is invalid

Hoare Triple Examples
Valid or invalid?

• Assume all variables are integers without overflow

{x != 0} y = x*x; {y > 0}

{z != 1} y = z*z; {y != z}

{x >= 0} y = 2*x; {y > x}

{true} (if(x > 7){ y=4; }else{ y=3; }) {y < 5}

{true} (x = y; z = x;) {y=z}

{x=7 ∧ y=5}
(tmp=x; x=tmp; y=x;)
{y=7 ∧ x=5}

valid
invalid
invalid

valid

invalid

valid

Aside: assert in Java
A Java assertion is a statement with a Java expression

assert (x > 0 && y < x);

Similar to our assertions
• Evaluate with program state to get true or false

Different from our assertions
• Java assertions work at run-time
• Raise an exception if this execution violates assert
• … unless assertion checking disable (discuss later)

This week: we are reasoning about the code statically
(before run-time), not checking a particular input

The General Rules

So far, we decided if a Hoare trip was valid by
using our informal understanding of programming
constructs

Now we’ll show a general rule for each construct
• The basic rule for assignments (they change state!)
• The rule to combine statements in a sequence
• The rule to combine statements in a conditional
• The rule to combine statements in a loop [next time]

Basic Rule: Assignment
{ P } x = e; { Q }

Let Q’ be like Q except replace x with e

Triple is valid if:
For all states where P holds, Q’ also holds
• That is, P implies Q’, written P => Q’

Example: { z > 34 } y = z + 1; { y > 1 }
• Q’ is { z + 1 > 1 }

Combining Rule: Sequence
{ P } S1; S2 { Q }

Triple is valid iff there is an assertion R such that both the
following are valid:

• { P } S1 { R }
• { R } S2 { Q }

Example:
{ z >= 1 }
y = z + 1;
w = y * y;
{ w > y }

Let R be {y > 1}
1. Show {z >= 1} y = z + 1 {y > 1}

Use basic assign rule:
z >= 1 implies z + 1 > 1

2. Show {y > 1} w = y * y {w > y}
Use basic assign rule:
y > 1 implies y * y > y

Combining Rule: Conditional
{ P } if(b) S1 else S2 { Q }

Triple is valid iff there are assertions Q1, Q2 such that:
• { P /\ b } S1 { Q1 } is valid
• { P /\ !b } S2 { Q2 } is valid
• Q1 \/ Q2 implies Q

Example:
{ true }
if(x > 7)

y = x;
else

y = 20;
{ y > 5 }

Let Q1 be {y > 7} and Q2 be {y = 20}
- Note: other choices work too!

1. Show {true /\ x > 7} y = x {y > 7}

2. Show {true /\ x <= 7} y = 20 {y = 20}

3. Show y > 7 \/ y = 20 implies y > 5

Our Approach
Hoare Logic, an approach developed in the 70’s

• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2) then:
• P1 is stronger than P2
• P2 is weaker than P1

Whenever P1 holds, P2 is guaranteed to hold
• So it is at least as difficult to satisfy P1 as P2
• P1 holds on a subset of the states where P2 holds
• P1 puts more constraints on program states
• P1 is a “stronger” set of obligations / requirements

P1 P2

Weaker vs. Stronger Examples
x = 17 is stronger than x > 0

x is prime is neither stronger nor weaker than
x is odd

x is prime /\ x > 2 is stronger than
x is odd /\ x > 2

…

Strength and Hoare Logic
Suppose:

• {P} S {Q} and
• P is weaker than some P1 and
• Q is stronger than some Q1

Then {P1} S {Q} and {P} S {Q1} and {P1} S {Q1}

Example:
• P is x >= 0
• P1 is x > 0
• S is y = x+1
• Q is y > 0
• Q1 is y >= 0

“Wiggle Room”

Strength and Hoare Logic
For backward reasoning, if we want {P}S{Q}, we could:

1. Show {P1}S{Q}, then
2. Show P => P1

Better, we could just show {P2}S{Q} where P2 is the
weakest precondition of Q for S

• Weakest means the most lenient assumptions such that Q will
hold after executing S

• Any precondition P such that {P}S{Q} is valid will be
stronger than P2, i.e., P => P2

Amazing (?): Without loops/methods, for any S and Q,
there exists a unique weakest precondition, written
wp(S,Q)

• Like our general rules with backward reasoning

Weakest Precondition
wp(x = e, Q) is Q with each x replaced by e

• Example: wp(x = y*y;, x > 4) is y*y > 4, i.e., |y| > 2

wp(S1;S2, Q) is wp(S1,wp(S2,Q))
• i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
• Example: wp((y=x+1; z=y+1;), z > 2) is

(x + 1)+1 > 2, i.e., x > 0

wp(if b S1 else S2, Q) is this logical formula:
(b ∧ wp(S1,Q)) ∨ (!b ∧ wp(S2,Q))

• In any state, b will evaluate to either true or false…
• You can sometimes then simplify the result

Simple Examples
If S is x = y*y and Q is x > 4,

then wp(S,Q) is y*y > 4, i.e., |y| > 2

If S is y = x + 1; z = y – 3; and Q is z = 10,
then wp(S,Q) …
= wp(y = x + 1; z = y – 3;, z = 10)
= wp(y = x + 1;, wp(z = y – 3;, z = 10))
= wp(y = x + 1;, y-3 = 10)
= wp(y = x + 1;, y = 13)
= x+1 = 13
= x = 12

Bigger Example
S is if (x < 5) {

x = x*x;
} else {

x = x+1;
}

Q is x >= 9

wp(S, x >= 9)
= (x < 5 ∧ wp(x = x*x;, x >= 9))
∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))

= (x < 5 ∧ x*x >= 9)
∨ (x >= 5 ∧ x+1 >= 9)

= (x <= -3) ∨ (x >= 3 ∧ x < 5)
∨ (x >= 8)

-4 -3 -2 -1 0 721 4 653 8 9

Conditionals Review
Forward reasoning

{P}
if B

{P ∧ B}
S1
{Q1}

else
{P ∧ !B}
S2
{Q2}

{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q))
∨ (!B ∧ wp(S2, Q)) }

if B
{wp(S1, Q)}
S1
{Q}

else
{wp(S2, Q)}
S2
{Q}

{Q}

“Correct”
If wp(S, Q) is true, then executing S will always
produce a state where Q holds, since true holds for
every program state.

Oops! Forward Bug…
With forward reasoning, our intuitve rule for assignment is wrong:

• Changing a variable can affect other assumptions

Example:
{true}
w = x+y;
{w = x + y;}
x = 4;
{w = x + y ∧ x = 4}
y = 3;
{w = x + y ∧ x = 4 ∧ y = 3}

But clearly we do not know w = 7 (!!!)

Fixing Forward Assignment
When you assign to a variable, you need to replace all other
uses of the variable in the post-condition with a different
“fresh” variable, so that you refer to the “old contents”

Corrected example:
{true}
w=x+y;
{w = x + y;}
x=4;
{w = x1 + y ∧ x = 4}
y=3;
{w = x1 + y1 ∧ x = 4 ∧ y = 3}

Useful Example: Swap
Name initial contents so we can refer to them in the post-condition

Just in the formulas: these “names” are not in the program

Use these extra variables to avoid “forgetting” “connections”

{x = x_pre ∧ y = y_pre}
tmp = x;
{x = x_pre ∧ y = y_pre ∧ tmp=x}
x = y;
{x = y ∧ y = y_pre ∧ tmp=x_pre}
y = tmp;
{x = y_pre ∧ y = tmp ∧ tmp=x_pre}

