
 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 1 of 13

Question 1. (8 points, 2 each) Equality. Recall that there are several different notions of
object equality that we’ve encountered this quarter. In particular, we have the following
three:

• Reference equality: two objects are reference equivalent (==) if they are the same
object.

• Behavioral equality: two objects are behaviorally equivalent if there is no
sequence of operations (other than ==) that can distinguish them.

• Observational equality: two objects are observationally equivalent if there is no
sequence of observer operations that can distinguish them (other than ==)

Now suppose we have a class Thing that implements immutable objects with
appropriate equals and hashCode methods. Consider the following code fragment.
We would like to know, for each of the assertions P, Q, R, and S, what we can conclude
at that point in the program.

final Thing x = ...;
final Thing y = ...;
if (x.hashCode() == y.hashCode()) {
 { P }
} else {
 { Q }
}
if (x.equals(y)) {
 { R }
} else {
 { S }
}

For each of the assertions P, Q, R, and S, indicate, by writing in the blank, the roman
numeral of the strongest assertion what we can conclude at that point in the program:

i. x is equal to y (by reference)
ii. x is equivalent to y (observationally or behaviorally or both)

iii. x is not equal to y (by reference)
iv. x is not equivalent to y (observationally or behaviorally or both)
v. true (the weakest possible assertion)

P ___v___ Q ___iv___ R ___ii___ S ___iv___

Note: For Q and S we awarded partial credit if the given answer was iii. It is true if
two objects are not equivalent as reported by equals then they are not the same
object (not ==), but that is a weaker assertion.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 2 of 13

Question 2. (8 points, 4 each) Debugging. Use the terms defect, error, and failure to
answer the following questions in 1 or 2 sentences.

(a) Define debugging in terms of these concepts.

Discover the defect that led to a failure.

(b) What is the purpose of adding an assert statement to a program?

Turn an error into a failure as quickly as possible.

Question 3. (8 points, 4 each) More debugging. Also answer in 1 or 2 sentences each.

(a) Suppose we have a program that exhibits a failure only when assertions are disabled
and executes correctly if assertions are enabled. What is the most likely reason this could
happen?

Most likely is that the expression in some assert statement has a side effect or
performs a computation that is required for correct functioning of the program.

(b) A first step in debugging is to create a small test that demonstrates the failure. Why
should we add that test case to the regression-test suite once we’ve fixed the bug? After
all, the bug is fixed and all the tests pass now.

A defect is caused by some error or misunderstanding. Adding the test to the
permanent suite guarantees that if the defect is re-introduced in the future for a
similar or different reason it will be caught. It also increases the quality and
comprehensiveness of the test suite.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 3 of 13

The next several questions concern the following classes.

Please remove this page from the exam and use it to answer questions on the next
few pages. Do not include this page in your submitted exam. It will not be graded.

Consider the following classes:

abstract class Bird {
 public abstract void speak();
 public void move() { System.out.println("flap flap!"); }
 public void move(int n) { move(); speak(); }
}

class Canary extends Bird {
 public void speak() { System.out.println("chirp!"); }
 public void move(int n) { speak(); speak(); }
}

class Duck extends Bird {
 public void speak() { System.out.println("quack!"); }
}

class RubberDuck extends Duck {
 public void speak() { System.out.println("squeak!"); }
 public void move() { speak(); swim(); }
 public void swim() { System.out.println("paddle!"); }
}

Please remove this page from the exam and use it to answer questions on the next
few pages. Do not include this page in your submitted exam. It will not be graded.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 4 of 13

Question 4. (12 points, 2 points each). Here are several groups of statements that might
be found in a program that uses the classes on the previous page. For each group, if the
statements compile and execute successfully without any errors, write the output that is
produced. If there is an error, explain in a sentence what is wrong.

(a) Bird b = new Bird();
 b.move();

 Compile error: cannot create instances of an abstract class.

(b) Bird b = new Canary();
 b.move(17);

 chirp!
 chirp!

(c) Bird b = new Duck();
 b.move(42);

 flap flap!
 quack!

(d) Bird b = new RubberDuck();
 b.move(3);

 squeak!
 paddle!
 squeak!

(e) Duck donald = new RubberDuck();
 donald.swim();

 Compile error: no swim method in class Duck

(f) Duck donald = new RubberDuck();
 donald.move();

 squeak!
 paddle!

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 5 of 13

Question 5. (8 points) More Birds. We’d now like to create a class to hold a collection
of Birds (an aviary). Here are some basic parts of the class definition:

// a collection of Birds
public class Aviary {
 private List<Bird> birds;
 private static Random r = new Random();

 // construct an empty Aviary
 public Aviary() {
 birds = new ArrayList<Bird>();
 }

 // add one Bird to the Aviary
 public void add(Bird b) {
 birds.add(b);
 }
 // return a random Bird from the Aviary

 public Bird get() {
 return birds.get(r.nextInt(birds.size()));
 }
}

(a) (2 points) We would like to add a method to this class to be able to add any collection
of Birds to an Aviary. Fill in the most general type possible for the flock parameter
of the addAll method below so it will accept any Java Collection containing Birds or
objects that are from any subclasses of Birds.

 // add a Collection of Birds to the Aviary

 public void addAll(Collection <? extends Bird> flock) {
 birds.addAll(flock);
 }

(continued next page)

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 6 of 13

Question 5. (cont.) For some applications we’d like to create a collection of Birds that
can hold only Ducks or subtypes of Ducks. Suppose we create the following class:

class Pond extends Aviary {
 public void add(Duck d) {
 super.add(d);
 }
}

(b) (2 points) Does this new add method override or overload the add method inherited
from Aviary, or does it cause some sort of error when we try to compile this new class?

Overload.

(Pond contains an add(Duck) method as well as the inherited add(Bird).)

(c) (2 points) Is class Pond a Java subtype of Aviary? Explain your answer in 1 or 2
sentences.

Yes. Pond is declared to extend Aviary, and the resulting subclass compiles
without errors.

(d) (2 points) Is class Pond a true subtype of Aviary? Explain your answer in 1 or 2
sentences.

Yes, but probably not for the reasons the author of Pond intended. An instance of
Pond can be substituted for an instance of Aviary and any client code that expects
an Aviary object will see exactly the same behavior when it is using a Pond.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 7 of 13

Question 6. (10 points, 1 each) Generics and containers. Recall our Bird class
hierarchy:

class Bird
class Canary extends Bird
class Duck extends Bird
class RubberDuck extends Duck

Now suppose we have the following variables:

Object o; Bird b; Canary c; Duck d; RubberDuck r;

List<? extends Bird> leb;
List<? extends Duck> led;
List<? super Duck> lsd;

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR led.add(d);

OK ERROR leb.add(o);

OK ERROR lsd.add(r);

OK ERROR lsd.add(o);

OK ERROR leb.add(null);

OK ERROR d = lsd.get(1);

OK ERROR d = led.get(1);

OK ERROR b = leb.get(1);

OK ERROR o = led.get(1);

OK ERROR b = lsd.get(1);

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 8 of 13

Question 7. (8 points, 2 each) Comparing specifications. Recall that a prime number n
is a natural number (integer) that is greater than 1 and that cannot be written as the
product of two natural numbers that are both smaller than n. Consider the following
specifications. All values (parameter and return values) are integers.

S1: @param x input number
 @requires x > 0
 @return the largest prime number that is less than x
 @throws NoSuchPrimeNumberException if there is no prime number that is less
 than x

S2: @param x input number
 @requires x > 2
 @return the largest prime number that is less than x

S3: @param x input number
 @requires x > 0
 @return the largest prime number that is less than or equal to x
 @throws NoSuchPrimeNumberException if there is no prime number that is less
 than or equal to x

S4: @param x input number
 @return the largest prime number that is less than x
 @throws NoSuchPrimeNumberException if there is no prime number that is less
 than x

In the answers below, you do not need to include each specification in the list of ones that
are stronger or equivalent to itself. Just list the other specifications that are stronger or
equivalent (if any). If there are no other specifications in an answer, write “none”.

(a) List all of the specification that are stronger than or equivalent to S1. ___S4________

(b) List all of the specification that are stronger than or equivalent to S2. ___S1, S4_____

(c) List all of the specification that are stronger than or equivalent to S3. ___none______

(d) List all of the specification that are stronger than or equivalent to S4. ___none______

Note: No partial credit was awarded if a wrong answer was included in addition to
the ones given above. We did allow 1 point partial credit on (b) if one of the two
correct answers was omitted.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 9 of 13

Question 8. (10 points) Java graphics. One of the new interns has been trying to learn
Swing so they can work on an old application program that uses it. The intern has come
up with this program, which is supposed to draw a red oval that almost fills a window.
Unfortunately, when the program is run nothing appears to happen. We've rechecked the
method calls that compute the size of the oval and we're sure that those are right – the
size is computed correctly, and the width and height parameters are in the right order.
Something else is causing the problem.

Your job is to modify, delete, or add the necessary code to fix the program so the output
will look like the drawing to the left (i.e., the expected picture). There might be multiple
bugs.

import java.awt.*;
import javax.swing.*;
public class DrawOval {
 public static void main(String[] args) {
 JFrame frame = new JFrame("An Oval");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JPanel panel = new Oval();
 panel.setPreferredSize(new Dimension(300,200));
// panel.paintComponent(new Graphics2D());
 frame.add(panel, BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }
}
public class Oval extends JPanel {
 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Graphics2D g2 = (Graphics2D) g;
 int height = getHeight();
 int width = getWidth();
 // draw a red oval
 g2.setColor(Color.red);
 g2.fillOval(10,10,width-20,height-20);
 }
}
Corrections are shown in the code above, and all are in method main. The program
should not create a new Graphics2D object and should not call
paintComponent. It does need to add the Oval to the frame, pack the frame, and
make it visible. frame.add(panel) would also work without the CENTER
parameter, and the code would work if the panel is added elsewhere in the frame.

We did not penalize additional changes to the code if the resulting program still
produced the correct results.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 10 of 13

Question 9. (10 points, 2 each) Design patterns. Here is an alphabetical list some design
patterns we discussed this quarter. Note that some of these may be more specific
instances of other patterns.

Adapter, Builder, Composite, Decorator, Dependency Injection, Factory, Iterator, Intern,
Interpreter, Model-View-Controller (MVC), Observer, Procedural, Prototype, Proxy,
Singleton, Visitor

For each statement below, list all of the design patterns from the list above that meet the
description. Each answer might include one or more design patterns, and for full credit
you must list all of them. There is at least one design pattern that fits each of these
descriptions.

(a) The pattern involves a class where most of the functionality is provided by one other
class.

Adapter, Decorator, Proxy

(b) The pattern is a way to implement the Procedural pattern without using
instanceof tests.

Visitor

(c) The pattern should only be used only for immutable classes.

Intern

(d) The pattern is fundamental to the way that Java’s Graphical User Interface (GUI)
libraries are organized.

Observer

(e) It is necessary to make constructors private if we want to require that clients use this
pattern.

Builder, Factory, Prototype, Singleton, Intern

Note: For part (e), we did award partial credit if one or two of the listed patterns
were missing and no incorrect ones were supplied, but if more than a couple of the
correct ones were missing then that was not sufficient for partial credit.

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 11 of 13

Question 10. (5 points) Build tools. All modern development environments (IDEs) like
Eclipse, Intellij, Visual Studio, and so forth have built-in tools to automatically build and
rebuild executable programs as code is added or changed in a project. Yet almost all
projects use an external build tool like ant or make to do the actual building, bypassing
the provided tools in the IDE. Why? Why not just simplify things by using the IDE
build tools? (Be brief – a couple of sentences ought to be enough.)

It is important that all members of a project team use the same build strategy and
tools so the build is consistent and reproducible for all team members, regardless of
their preference in development environments or systems.

Question 11. (6 points) Version control. A major reason for using version control
systems like git is to allow many programmers to collaborate on a project. But even if
you are working on a project by yourself, using a version control system can be useful.
Describe two distinct benefits of using a version control system for a project even if you
are working by yourself. One or two sentences each should be enough.

Here are several:

(i) Provide backup storage for files.

(ii) Provide a history log to see when changes were made and, assuming useful log
messages, why.

(iii) Provide the ability to retrieve past versions of files.

(iv) Make it easy to keep files synchronized and up-to-date when working on a
project in multiple locations. (This is very similar to (i), but we did allow credit for
it as a different reason.)

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 12 of 13

Question 12. (5 points, 1 point each) System integration. When building a large system,
there are two common strategies for the order in which to implement and test the
different parts of the system: top-down and bottom-up. These two strategies have
different characteristics and strengths.

For each of the following, circle “top-down” or “bottom-up” if that strategy is the best
match to the description. If both strategies are a good match or are effective at solving
the problem, circle “both”. If neither strategy matches the description or neither is
particularly effective at solving the problem, circle “neither”.

(a) Best at catching major design or usability errors early

 top-down bottom-up both neither

(b) When a new module is added, the number of modules it interacts with and potential
number of places to look for an error is larger

 top-down bottom-up both neither

(c) Requires building stubs, sometimes also known as “mock objects”

 top-down bottom-up both neither

(d) Best at showing visible or tangible progress to clients and other team members

 top-down bottom-up both neither

(e) Best at uncovering infrastructure efficiency issues early

 top-down bottom-up both neither

A

B

F

C D

G

E

 CSE 331 18wi Final Exam 3/12/18 Sample Solution

 Page 13 of 13

Question 13. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

Draw a picture of something that you plan to do during your spring break!

J

(Ideas for better pictures to include in the permanent copy of the sample solution
would be appreciated.)

Congratulations from the CSE 331 staff!
Have a great spring break!!

