
CSE 331 Spring 2018 Final​ (Solution)

Name __

There are 8 questions worth a total of 100 points. ​Please budget your time so that
you get as many points as possible.​ We have done our best to make a test that folks
can complete in 110 minutes, but everyone works at a different pace, and that is just
fine!

The exam is closed book, closed electronics, closed classmates, open mind. Many of
the questions have short answers, even if the prompt is a little long. Don’t worry!

For all questions involving proofs, assertions, invariants, etc., please assume that all
integer quantities are unbounded (e.g., overflow cannot happen) and that ​integer
division and square root (sqrt) are truncating as in Java​, i.e., 5/3 evaluates to 1
and sqrt(17) evaluates to 4.

If you do not remember the syntax of some command or the format of a command’s
output, make the best attempt you can. We will not be grading syntactic details.

Relax and have fun! We’re all here to learn.

Please wait to turn the page until everyone is told to begin.

1. _________________ / 10 5. _________________ / 20

2. _________________ / 12 6. _________________ / 20

3. _________________ / 8 7. _________________ / 12

4. _________________ / 12 8. _________________ / 6

1

QUESTION 1:​ Warm Up (10 points)

For each statement below, please indicate whether it is true or false by clearly circling the
appropriate answer on the right side.

In general, code with a stronger specification TRUE / False
is harder to implement but easier to use.

Methods should ​always​ checks their preconditions True /
FALSE
(@requires) to ensure arguments are valid.

Java subtypes are always true subtypes. True /
FALSE

If A is a true subtype of B, then an instance of A TRUE / False
can be safely substituted in for an of B.

The Java type system ensures that objects only TRUE / False
refer to fields and call methods that are defined.

The Java type system ensures that all exceptions are True /
FALSE
either caught or declared in a method’s throws clause.

Array subtyping in Java is covariant. TRUE / False

Debugging is easier than writing code, so it is OK to be True /
FALSE
as clever as possible when developing your program.

2

Sometimes you should call ​paintComponent() ​ in Swing. True /
FALSE

Sometimes you should call ​repaint() ​ in Swing. TRUE / False

3

QUESTION 2:​ Generics and Wildcard Bounds (12 points)

Given this class hierarchy:

class Pet

class Cat extends Pet

class Dog extends Pet

class Husky extends Dog implements Mascot

and the following variables:

Object o; Pet p; Cat c; Dog d; Husky h; Mascot m;

List <? extends Pet> lep;

List <? extends Cat> lec;

List <? super Husky> lsh;

For each of the following, circle OK if the statement has correct Java types and will compile
without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR lsh.add(h);

OK ERROR lep.add(o);

OK ERROR lep.add(d);

OK ERROR lec.add(p);

OK ERROR lsh.add(o);

OK ERROR lec.add(null);

OK ERROR d = lsh.get(1);

OK ERROR d = lec.get(1);

OK ERROR d = lep.get(1);

OK ERROR o = lec.get(1);

OK ERROR p = lsh.get(1);

OK ERROR p = null.get(1);

4

QUESTION 3:​ Subtyping and Generics (8 points)

Given this class hierarchy (repeated from the previous problem):

class Pet

class Cat extends Pet

class Dog extends Pet

class Husky extends Dog implements Mascot

For each statement below, please indicate whether it is true or false by clearly circling the
appropriate answer on the right side. Remember that ​Set ​ implements ​Collection ​.

Set<Pet> ​ is a Java subtype of ​Collection<Pet> TRUE / False

Collection<Pet> ​ is a Java subtype of ​Set<Pet> True /
FALSE

Set<Cat> ​ is a Java subtype of ​Set<Pet> True /
FALSE

Set<Pet> ​ is a Java subtype of ​Set<Cat> True /
FALSE

Set<Cat> ​ is a Java subtype of ​Collection<Pet> True /
FALSE

Dog[] ​ is a Java subtype of ​Pet[] TRUE / False

Pet[] ​ is a Java subtype of ​Dog[] True /
FALSE

Subtyping can be confusing TRUE / False

5

QUESTION 4:​ Specification Strength and Substitutability (12 points)

Here are 4 specifications for a ​search() ​ method that finds paths between nodes in a graph.
All specifications have the same “​@param ​” Javadoc entries:

@param graph - graph to search

@param source - node to start search from

@param sink - node to end search to

S1: @requires graph contains at least one path from source to sink

@return a path from source to sink in graph

S2: @requires graph contains at least one path from source to sink

@return the shortest path from source to sink in graph

S3: @requires graph != null

@return a path from source to sink in graph if one exists,

 otherwise null

S4: @requires graph contains no cycles

@return the shortest path from source to sink in graph if one exists,

 otherwise null

We have four different implementations of the ​search() ​ method, A, B, C, and D. Each of
these implementations is known to satisfy at least one specification, as shown in the table below
(i.e., A satisfies S1, B satisfies S2, C satisfies S3, and D satisfies S4).

Your job is to add additional X’s in the table for the cases where we can conclude that an
implementation satisfies additional specifications given that it is known to satisfy the
specification already given in the table. (i.e., given the specifications above, and the known
“implementation xi satisfies Si”​ information, which other specifications are also satisfied by each
of the implementations?)

 S1 S2 S3 S4

A X

B X X

C X X

D X

6

QUESTION 5:​ Event-driven Programming and Module Dependencies (20 points)

The ​eventLoop() ​ method in the ​Main ​ class of the provided code (on a separate sheet) is
fairly straightforward: it loops forever and on each iteration gets a ​Message m ​ and handles it by
calling ​handle(m) ​ on the appropriate ​Handler ​ based on the sender (represented as an
integer id).

However, ​eventLoop() ​also has several design decisions fixed in the code that could be
hard to modify: handlers cannot be dynamically added or removed from listening for messages,
the polling technique (waiting for messages) is “baked in” which can make it tricky to change
how the code listens for new messages, and having a single handler respond to messages from
different senders requires copy/pasting code between cases.

(a) To address these issues, your buddy Susan developed more general ​Dispatcher ​ and
Listener ​ classes shown on the previous page. Rewrite ​eventLoop() ​ to use these methods
and avoid any explicit loops or conditionals/switches in method. ​(Hint: Our solution is ~ 10 lines.)

void eventLoop() {

 Dispatcher d = new Dispatcher();

 d.register(1, new Handler(1));

 d.register(2, new Handler(2));

 d.register(3, new Handler(3));

 Listener l = new Listener(d);

 l.listen();

}

7

(QUESTION 5 continued)

Remember that Module Dependency Diagrams (MDDs) are graphs where an edge is drawn
from module A to module B if module A depends on module B.

(b) Draw the edges in the MDD for the code with the original version of ​eventLoop()

Message Handler Main

Dispatcher Listener

For grading, we are ignoring the arrows to/from Dispatcher and Listener.

(c) Draw the edges in the MDD for the code with your updated version of ​eventLoop()

Message Handler Main

Dispatcher Listener

It can be argued either way on whether Listener depends on Message, so we accept
either answer (indicated by a dashed arrow).

(d) Are there fewer or more edges in the updated MDD? What does this imply about the relative
complexity of the two strategies? Which will be easier to extend and why?

There are more edges in the updated MDD, so the updated version is more complex.
However, the updated version can be more easily extended, as we need only a small
amount of extra code to reuse the Listener and Dispatcher with different Handlers (as can
be seen from the small amount of code in eventLoop).

8

QUESTION 6:​ Testing and Debugging (20 points)

Effectively testing and debugging event-driven code can be challenging; just think of your most
subtle challenge from Campus Maps in HW9! In this question we will think about testing and
debugging for the ​Dispatcher ​ class from the code used for Question 5.

(a) Write a brief specification of how the ​register() ​ and ​dispatch() ​ methods should work
together.

register(sender, h) will register h to handle messages from the given sender.
dispatch(m) will make all handlers that are registered with m.sender() handle m.

(b) Describe three black-box tests that ensure the ​register() ​ and ​dispatch() ​ methods
work together correctly. If there is a bug in these methods, describe at least one test that
reveals the defect and propose a fix.

Let d be a newly created Dispatcher, and m be a Message such that m.sender() == 1. Let
h1, h2, and h3 be Handlers.

Test 1: Call d.dispatch(m). Nothing should happen.

Test 2: Call d.register(1, h1). Call d.register(2, h2). Call d.register(3, h3). Call
d.dispatch(m). h1.handle(m) should be called. h2.handle(m) and h3.handle(m) should not
be called.

Test 3: Call d.register(1, h1). Call d.register(1, h2). Call d.register(1, h3). Call
d.dispatch(m). h1.handle(m), h2.handle(m), and h3.handle(m) should be called once each
in some order.

Test 1 catches a bug. In dispatch(), hs will be null, and the for loop will result in a
NullPointerException. The following is one possible fix for the body of dispatch():

if (registry.containsKey(m)) {

 List<Handler> hs = registry.get(m.sender());

 for(Handler h : hs)

 h.handle(m);

}

9

(QUESTION 6 continued)

(c) Expand your specification from part (a) to now describe how the ​register() ​,
unregister() ​, and ​dispatch() ​ methods should work together.

register(sender, h) will register h to handle messages from the given sender.
unregister(sender, h) will (if h has been registered with the given sender) unregister h
from the given sender.
dispatch(m) will make all handlers that are registered with m.sender() (and has not yet
been unregistered) handle m.

(d) Describe three black-box tests that ensure the ​register(), unregister() ​, and
dispatch() ​ methods work together correctly. If there is a bug in these methods, describe at
least one test that reveals the defect and propose a fix.

Let d be a newly created Dispatcher, and m be a Message such that m.sender() == 1. Let
h1, h2, and h3 be Handlers.

Test 1: Call d.register(1, h1). Call d.unregister(2, h1). Call d.handle(m). h1.handle(m)
should be called.

Test 2: Call d.register(1, h1). Call d.unregister(1, h2). Call d.handle(m). h1.handle(m)
should be called. h2.handle(m) should not be called.

Test 3: Call d.register(1, h1). Call d.register(1, h2). Call d.register(1, h3). Call
d.unregister(1, h1). Call d.handle(m). h2.handle(m) and h3.handle(m) should be called.
h1.handle(m) should not be called.

Test 3 catches a bug. The unregister method incorrectly unregisters all Handlers from
sender 1, so the d.handle(m) call does nothing. The following is one possible fix for the
body of unregister():

if (registry.containsKey(sender)) {

 registry.get(sender).removeAll(h);

}

10

QUESTION 7: Short Answer (12 points)

Please keep your responses short and clear. A single sentence will usually suffice.

(a) Describe a situation that demonstrates why an object that overrides ​equals ​ should also
override ​hashCode ​.

HashSet compares hash code to check for equality

(b) What limitation of Java constructors inspired the Factory design pattern (and many other
creational patterns)?

Constructors can’t return subclasses

(c) Could it be appropriate to use the Interning design pattern with ​RatNum ​ objects from
Homework 4? If so, describe a situation when it might be useful. If not, justify why not.

Yes. Any program with lots of rational numbers that will likely be similar.
Note: It is possible to use interning with objects with many possible values, such as
Java’s Integer wrapper class.
https://thecodebutchery.com/2013/02/25/java-long-and-integer-objects-interning-and-com
parison-methods/

(d) Could it be appropriate to use the Interning design pattern with a graph ADT like the from
Homework 5? If so, describe a situation when it might be useful. If not, justify why not.

No. Graphs aren’t immutable. They can say yes iff they specifically say only an
immutable graph and give a good example.

(e) Please rank the following strategies for dealing with bugs from best (1) to worst (4):

___3__ Make errors immediately visible

___4__ Debugging

___1__ Use tools that make errors impossible

___2__ Write code carefully to avoid introducing bugs

11

https://thecodebutchery.com/2013/02/25/java-long-and-integer-objects-interning-and-comparison-methods/
https://thecodebutchery.com/2013/02/25/java-long-and-integer-objects-interning-and-comparison-methods/

12

QUESTION 8:​ Reflecting on the Bigger Picture (6 points)

Please choose ​one​ of the following prompts and write a brief paragraph on that topic below:

- How could applying the ideas you learned in 331 help to make the world a better place?

- What 331 topic do you wish you had learned earlier? When would it have helped?

- What 331 topic do you think will be most useful in the future? Why?

Answers vary, but we required a reasonably well-written and thoughtful response for full
points.

THANK YOU FOR A GREAT QUARTER :)

HAVE A SPECTACULAR SUMMER AND GOOD LUCK IN EVERYTHING!

13

14

Questions 5 and 6 refer to this code which sketches a simple event loop that dispatches
messages received from some source to the appropriate handler.

/* BASIC VERSION */

class Message {

 int sender() {

... /* return sender id */

 }

}

class Handler {

 Handler(int id) {

 ... /* initialize handler for Messages from sender id */

 }

 void handle(Message m) {

 ... /* handle a Message */

 }

}

class Main {

 void eventLoop() {

 // make handlers for messages from various senders

 Handler h1 = new Handler(1);

 Handler h2 = new Handler(2);

 Handler h3 = new Handler(3);

 // forever

 while(true) {

 // wait till we get the next message

 Message m = receiveMessage();

 // dispatch message to correct handler

 switch(m.sender()) {

 case 1: h1.handle(m); break;

 case 2: h2.handle(m); break;

 case 3: h3.handle(m); break;

 }

 }

 }

}

15

/* ADDITIONAL DEFINITIONS USED IN QUESTION 5 */

class Dispatcher {

 Map<Integer, List<Handler>> registry;

 Dispatcher() {

 registry = new HashMap<Integer, List<Handler>>();

 }

 void register(int sender, Handler h) {

 List<Handler> hs = registry.get(sender);

 if(hs == null)

 hs = new ArrayList<Handler>();

 hs.add(h);

 registry.put(sender, hs);

 }

 /* remove h from the handlers listening for messages from sender */

 void unregister(int sender, Handler h) {

 registry.remove(sender);

 }

 void dispatch(Message m) {

 List<Handler> hs = registry.get(m.sender());

 for(Handler h : hs)

 h.handle(m);

 }

}

class Listener {

 Dispatcher d;

 Listener(Dispatcher d) {

 this.d = d;

 }

 void listen() {

 while(true)

 d.dispatch(receiveMessage());

 }

}

16

