
 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 1 of 11

Remember: For all of the questions involving proofs, assertions, invariants, and so forth,
you should assume that all numeric quantities are unbounded integers (i.e., overflow can
not happen) and that integer division is truncating division as in Java, i.e., 5/3 => 1.

Question 1. (10 points) (Forward reasoning) Using forward reasoning, write an assertion
in each blank space indicating what is known about the program state at that point, given
the precondition and the previously executed statements. Your final answers should be
simplified. Be as specific as possible, but be sure to retain all relevant information.

(a) { x > 7 }

 x = x + 4;

 { x > 11 }

 y = x – 2;

 { x > 11 && y > 9 }

 x = 2 * x;

 { x > 22 && y > 9 }

(b) { |x| > 5 }

 if (x > 0)

 { |x| > 5 && x > 0 } => { x > 5 }

 x = 3 - x;

 { x < -2 }

 else

 { |x| > 5 && x <= 0 } => { x < -5 }

 x = x - 1;

 { x < -6 }

 { (x < -2) || (x < -6) } => { x < -2 }

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 2 of 11

Question 2. (12 points) (assertions) Using backwards reasoning, find the weakest
precondition for each sequence of statements and postcondition below. Insert appropriate
assertions in each blank line. You should simplify your final answers if possible.

(a) (5 points)

 { |y-2 + 2| = 10 } => { |y| = 10 }

 x = y - 2;

 { |x+2| = 10 }

 w = x + 2;

 {|w| = 10}

(b) (7 points)

 { (x > y && |x-y| < y) || (x <= y && |x+y| < y) }

 if (x > y) {

 { |x-y| < y }

 x = x - y;

 { |x| < y }

 } else {

 { |x+y| < y }

 x = x + y;

 { |x| < y }

 }

 { |x| < y }

Note: This one had a precondition that was more complicated than we intended, and
there isn’t any easy way to simplify it. We gave full credit for preconditions that
were equivalent to this one.

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 3 of 11

Question 3. (17 points) Loops. The code on the next page is alleged to sort an array of
integers using the algorithm “pancake sort”. The only operation that modifies the array is
flip(a,k), which reverses the elements in the array section a[k..a.length-1].
For example, if a = [5, 2, 6, 3, 2, 4] then flip(a,2) would reverse the section starting
at a[2] and change a to [5, 2, 4, 2, 3, 6] (the reversed elements are shown in italics).
You do not need to implement this operation or prove that it works – assume that it is
implemented correctly elsewhere.

Prove that pancakeSort successfully sorts its array argument by adding appropriate
assertions and invariants to the code below. You may assume that the array parameter a
is not null and has at least one element.

To save writing, you may write “a[i..j] is sorted” to mean a[i] ≤ a[i+1] ≤ … ≤ a[j]. You
may also use notations like “x = max(a[i..j])” to mean “x is the largest value in a[i..j]”
and use similar notations to describe minimum values in sections of the array.

Use the space below for scratch work, then provide your proof on the next page, which
should have enough room for your work.

You may remove this page from the exam if you wish.

We announced during the exam that to save time it was not necessary to provide a
complete correctness proof of the inner loop as long as an appropriate postcondition
for that loop was given. In the sample solution we’ve included an invariant for the
inner loop for reference, and the remaining proof steps should be easy to fill in.

We also edited the problem a little in the posted version. In the original version of
the problem, the inner loop was initialized with “int j = i; int minLoc = j;”, which
doesn’t quite establish a clean invariant for the loop. The problem is edited here to
make the posted version of the exam more useful for studying and practice in the
future.

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 4 of 11

Question 3. (cont.) Write your proof that the pancake sort method is correct by adding
assertions and invariants below. You might not need to put an assertion between every
two lines of code, but do not omit any essential details or steps.

{ pre: a != null && a.length >= 1 }
public static void pancakeSort(int[] a) {

 int i = 0;

 { inv: a[0..i-1] sorted and all a[0..i-1] <= a[i..a.length-1] }

 while (i != a.length) {

 { inv && i != a.length }

 int minloc = i;

 int j = i + 1;

 { inv2: a[minloc] = min(a[i..j-1]) } -- not	required

 while (j != a.length) {

 if (a[j] < a[minLoc]) {

 minLoc = j;

 }

 j = j + 1;

 }

 { a[minLoc] = min(a[i..a.length-1]) && inv }

 flip(a, minLoc);

 { a[a.length-1] = min(a[i..a.length-1]) && inv }

 flip(a, i);

 { a[0..i] sorted and all a[0..i] <= a[i+1..a.length-1] }

 i = i + 1;

 { inv }

 } // end of while loop

 { inv && i = a.length } => { a[0..a.length-1] sorted }

 { post: a[0..a.length-1] is sorted }
}

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 5 of 11

A bag or multiset is a set that allows duplicate elements. The next several questions concern a
class called IntBag that implements a bag of integer values. The representation of data in this
bag is an unordered linked list, where each node in the list contains an integer value and the
number of times (> 0) that the integer value occurs in the bag. For instance, one possible
representation of the multiset { 2, 3, 3, 2, 2, 1, 2 } is the following linked list:

Here is the beginning of the code for this class, showing the instance variable declarations (the
rep) and a zero-argument constructor that initializes an empty IntBag. Also included are a pair
of observer functions to return information about the contents of an IntBag.

public class IntBag {

 // Rep: an IntBag is stored as an unordered linked list of
 // nodes, each with a unique value and a positive count of
 // how many times that value occurs in the IntBag.

 private static class Link {
 int val; // data in this node
 int ncopies; // number of copies > 0 of val in this IntBag
 Link next; // next node in the list or null if none
 }

 // List of values stored in this IntBag
 private Link elts;

 /** Construct a new empty IntBag. */
 public IntBag() {
 elts = null;
 }

 /** Return the size of this IntBag.
 * (Example: for { 1 2 2 2 3 }, the value returned is 5.) */
 public int size() {
 // implementation omitted
 }

 /** Return number of copies of n in this IntBag or 0 if n
 * is not contained in this IntBag. */
 public int contains(int n) {
 // implementation omitted
 }

Answer questions about this ADT on the next few pages. You may remove this page from the
test for convenience if you wish.

1
1

3
2

2
4

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 6 of 11

Question 4. (12 points) (a) (3 points) Give a suitable abstract description of the class as
would be written in the JavaDoc comment above the IntBag class heading.

An IntBag is a multiset of integers that is unordered and allows duplicate values. A
typical IntBag would be {e1, …, en}. Examples are: { } (empty), { 1, -2, 3 }, and
{ 1, 3, -4, 3, 3, 2, 1 } which is the same as { 1, 1, 2, 3, 3, 3, -4 }.

(b) (5 points) Give a suitable Representation Invariant (RI) for this class.

elts == null, or
if elts != null:

• elts references a single-linked list of Links with no cycles
• In the last node in the list p, p.next == null
• For every node p in the list, p.ncopies > 0
• If p and q are two nodes in the list and p != q, then p.val != q.val.

(c) (4 points) Give a suitable Abstraction Function (AF) for this class relating the RI to
the abstract value of a IntBag.

If elts == null, this IntBag represents an empty multiset { }
Otherwise elts references a linked list of nodes p1, …, pn.

• Each node pi represents the IntBag bi = { v, v, v, … v } where each v = pi.val
and the number of elements (copies of pi.val) in the IntBag is pi.ncopies.

• The abstract value of the complete IntBag is the union of the individual node
sets bi, i.e., b1 ∪ b2 ∪ … ∪ bn.

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 7 of 11

Question 5. (10 points) Specification. One function we need in our IntBag ADT is a
method to add an integer value to an IntBag, which might, of course, simply increase
the number of copies of that value in the IntBag. For consistency with other Java
collection add methods, this method should return true if it alters the collection, which
will always happen for a multiset like our IntBag. We’ll get to the implementation on
the next page, but we first need to properly specify this method below.

Complete the JavaDoc comments for the IntBag add method to provide the most
suitable specification. Leave any unneeded parts blank. There is space at the beginning
(before @param) where you should write a summary description of add as is done at the
beginning of every JavaDoc method specification. Hint: the answer probably won’t need
nearly this much space.

 /**
 * Add an integer value to this
 *
 *
 * @param n value to be added
 *
 *
 * @requires
 *
 *
 * @modifies this
 *
 *
 * @effects thispost = thispre ∪ { n }
 *
 *
 * @throws
 *
 *
 * @returns true
 *
 *
 */
 public boolean add(int n) {
 // Implementation omitted
 }

Notes: Set notation was not required in the @effects clause as long as the
description was clear. But the mathematical notation allows this to be done very
concisely.

The @returns clause needs to say that the function always returns true, since it
always modifies the IntBag.

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 8 of 11

Question 6. (15 points) Implementation. Give an implementation of method add for
IntBag below using the linked-list representation described on previous pages. Your
implementation should satisfy the specification of the method given in your answer to the
previous question, and should be consistent with the rep invariant and abstraction
functions you gave earlier.

public boolean add(int n) {

 // search for existing node containing n and
 // update its ncopies field if found

 Link curr = elts;

 while (curr != null) {

 if (curr.val == n) {

 // n found - increase number of copies & return

 curr.ncopies++;

 return true;

 } else {

 // advance to next node

 curr = curr.next;

 }

 }

 // n not found – add it to front of the list

 Link p = new Link();

 p.val = n;

 p.ncopies = 1;

 p.next = elts;

 elts = p;

 return true;

 }

}

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 9 of 11

Question 7. (9 points) Describe three separate, distinct “black box” tests for your
IntBag add method. For each test give the input values and expected result(s). You
do not need to write JUnit tests or other Java code. Reminder: there are size() and
contains() observer methods defined for this class that might be useful.

There are obviously many, many good answers. Answers were judged on whether
they contained good descriptions of inputs and expected outputs and whether they
tested different things. Here are several possibilities:

Input: create an empty IntBag b.
Output: verify that b.size() == 0; verify b.contains(1) == 0.

Input: create IntBag b; b.add(1)
Output: verify b.size() == 1, b.contains(1) = 1, b.contains(0) == 0.

Input: create IntBag b; b.add(-1)
Output: verify b.size() == 1, b.contains(-1) = 1, b.contains(1) == 0.

Input: create IntBag b; b.add(1); b.add(2)
Output: verify b.size() == 2, b.contains(1) == 1, b.contains(2) == 1, b.contains(0)==0

Input: create IntBag b; b.add(1); b.add(1)
Output: verify b.size() == 2, b.contains(1) == 2, b.contains(2) == 0

Input: create IntBag b; b.add(1); b.add(2); b.add(2)
Output: verify b.size() == 3, b.contains(1) == 1, b.contains(2) == 2, b.contains(3)==0

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 10 of 11

Question 8. (15 points) Equality. Give an implementation of a proper equals method
for class IntBag. You need to include the method heading, but do not need to write
Javadoc comments. Two IntBags a and b are equal if they contain exactly the same
elements – i.e., every integer that is found in one IntBag occurs exactly the same
number of times in the other IntBag. Note: you are only being asked to implement
equals. You are not being asked to provide a hashCode function.

Hint: the solution does not need to be all that long, particularly if you take advantage of
some of the other methods in the class – in particular, the sample solution didn’t require a
nested loop. However, you may not assume that there are additional methods available in
IntBag besides the ones already given previously or implemented in earlier problems,
or that would be inherited by IntBag from class Object.

 @Override

 public boolean equals(Object other) {

 if (! (other instanceof IntBag))

 return false;

 IntBag b = (IntBag) other;

 // if number of elements do not match then the
 // IntBags can't be equal

 if (b.size() != this.size())

 return false;

 // if sizes match, then each integer in this IntBag
 // must occur the same number of times in the other
 // one for the IntBags to be equal.

 Link p = elts;

 while (p != null) {

 if (p.ncopies != b.contains(p.val))

 return false;

 p = p.next;

 }

 return true;

 }

 CSE 331 Midterm Exam 5/13/16 Sample Solution

 Page 11 of 11

Question 9. (10 points) Comparing specifications. This (final) question does not
concern the IntBag ADT from the previous questions.

Here are parts of four possible specifications for a method that returns a prime number.
(Recall that prime numbers have no integer divisors other than themselves and 1. The
first few primes are 2, 3, 5, 7, 11, 13, … .)

A. @param x
 @requires x is prime
 @return the next prime number greater than x

B. @param x
 @requires x > 0
 @return the next prime number greater than x

C. @param x
 @throws IllegalArgumentException if x < 3 or x is not prime
 @return the next prime number greater than x

D. @param x
 @requires x is prime
 @return the next integer greater than x (i.e., x+1)

(a) List all of the specification that are stronger than A. __B__

(b) List all of the specification that are stronger than B. __none__

(c) List all of the specification that are stronger than C. __none__

(d) List all of the specification that are stronger than D. __none__

(e) Is it possible for a single method to satisfy A and B? (yes or no) __yes__

(f) Is it possible for a single method to satisfy A and C? (yes or no) __no__

