
 CSE 331 Final Exam 6/7/16

 Page 1 of 15

Name __

There are 12 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 10

2. ______ / 9

3. ______ / 12

4. ______ / 7

5. ______ / 10

6. ______ / 9

7. ______ / 8

8. ______ / 10

9. ______ / 5

10. ______ / 10

11. ______ / 5

12. ______ / 5

 CSE 331 Final Exam 6/7/16

 Page 2 of 15

Question 1. (10 points, 1 each) Warmup. For each statement, circle T if it is true and F if
it is false.

a) T / F Integration testing verifies the operation of a single specific module.

b) T / F A regression test compares the current output of a test with a previously
known value.

c) T / F Constructors can invoke any methods without problems, even ones
overridden in subclasses.

d) T / F A realistic test suite should aim for 100% path coverage.

e) T / F It is possible to use Java Interfaces to construct a Java subtype graph (i.e.,
graph of subtyping relationships) that does not form a strict hierarchical tree.

f) T / F A static factory method may return an object that has any subtype of the
declared return type.

g) T / F A static factory method must return a new, unique object each time it is
called.

h) T / F The Builder pattern is appropriate when constructing objects with many
possible parameters.

i) T / F The Adapter pattern keeps functionality of an object the same but changes
the interface presented to client code.

j) T / F In a Java Swing application, after a program updates data that is displayed
on the screen, it should call paintComponent to have the screen redrawn.

Question 2. (9 points, 3 each) Short answer. You shouldn’t need more than a couple of
sentences for each answer. (i.e., please keep it short)

(a) In the model-view-controller (MVC) pattern it is possible to use either pull updating
or push updating to send to the view new information from the model. When and why is
it better to use pull updating instead of push updating?

(continued on next page)

 CSE 331 Final Exam 6/7/16

 Page 3 of 15

Question 2 (cont.) (b) If a method is called with inappropriate argument values, there
are two possible ways to handle the situation. One is to specify that a particular
exception will be thrown if this happens (@throws). The other is to specify a
precondition (@requires) and, as a defensive programming measure, use an assert
statement to terminate the program if the precondition is violated. When is it more
appropriate to use the precondition (@requires) and assert instead of including a
documented exception in the method specification?

(c) A debugging strategy that is often surprisingly effective is known as “rubber duck
debugging”. What is it, and what is the main reason that it works (when it does)?

 CSE 331 Final Exam 6/7/16

 Page 4 of 15

Question 3. (12 points) A Generic question. We have the following method, which
returns the average of the numbers in a list of Integer values, or returns 0.0 if the list is
empty:

 public static double avg(ArrayList<Integer> nums) {
 if (nums.size() == 0)
 return 0.0;
 double sum = 0;
 for (int i = 0; i < nums.size(); i++) {
 sum += nums.get(i);
 }
 return sum / nums.size();
 }

This method would be much more useful if it wasn’t restricted to a particular collection
type (ArrayList) and a single element type (Integer). Rewrite this method using
generics and collections so that it can be used to compute the average value of the items
in any Collection that contains any subtype(s) of Number.

Hint/reminder: Number is an abstract class, so it is not possible to create variables or to
return values of type Number. However all of the arithmetic needed can be done using
type double and using the doubleValue() method to convert any Number to a
Double. Also, remember that get(i) is not supported by all Collection types.

 CSE 331 Final Exam 6/7/16

 Page 5 of 15

Question 4. (7 points) Bugs ‘R Us. The following method is supposed to compute a
reciprocal product as defined in the specification.

 /**
 * @requires 0 <= x <= 10 (So no overflow or underflow bug)
 * @returns 0 if x or y is 0
 * otherwise, return the product of the reciprocals
 * of x and y (i.e if x is 5 and y is 2, return 0.1,
 * which is 1/5 * 1/2)
 */
 public static double getReciprocalProduct (int x, int y) {
 if (x == 0 || y == 0) {
 return 0;
 }
 double xRec = 1/x;
 double yRec = 1/y;
 return xRec * yRec;
 }

Unfortunately it doesn’t work.

(a) (2 points) What’s the defect (i.e., the bug)?

(b) (3 points) Write a test case that reproduces the bug by completing the JUnit method
below. (Hint: this might be very short).

 @Test
 public void ______________________________________ {

 }

(c) (2 points) Describe how to fix the bug (one sentence should be enough)

 CSE 331 Final Exam 6/7/16

 Page 6 of 15

The next several questions refer to the following Point class and several related
subclasses. To save space, the standard equals, hashCode, and toString methods
are omitted and their implementation details are not needed for the questions. We’ve also
omitted most of the specification comments – the specifications are straightforward and
match the code.

class Point {
 // rep: (x,y) coordinates on the plane
 // protected to give subclasses direct access
 protected float x, y;

 // constructor
 public Point(float x, float y) {
 this.x = x; this.y = y;
 }

 // observers
 public float getX() { return x; }
 public float getY() { return y; }

 // = distance to origin
 public double distance() {
 return Math.sqrt(x*x + y*y);
 }
}

In other words, a Point represents an immutable 2-D point in the usual Cartesian
coordinate space. Methods are provided to access the x and y coordinates of a Point
and to compute its distance from the origin.

Now consider the following additional classes, which extend the original class Point
directly or indirectly. These are all legal Java subclasses, and the code compiles without
errors or warnings.

class MutablePoint extends Point {
 public MutablePoint(float x, float y) {
 super(x,y);
 }
 // mutators
 public void setX(float x) { this.x = x; }
 public void setY(float y) { this.y = y; }
}

(Continued on the next page. You may remove these pages for convenience if you wish.)

 CSE 331 Final Exam 6/7/16

 Page 7 of 15

Additional subclasses to go with the code on the previous page.

class Point3D extends Point {
 // rep: add 3rd coordinate
 protected float z;

 // construct 3-D point at (x,y,z)
 public Point3D(float x, float y, float z) {
 super(x, y);
 this.z = z;
 }

 // observers
 public float getZ() { return z; }

 public double distance() {
 return Math.sqrt(x*x + y*y + z*z);
 }
}

class ColorPoint extends Point {
 // rep: add color
 protected java.awt.Color color;

 // construct 2-D point with given color
 public ColorPoint(float x, float y, java.awt.Color c) {
 super(x, y);
 this.color = c;
 }
 public java.awt.Color getColor() { return color; }

}

class ColorPoint3D extends ColorPoint {
 // rep: add 3rd coordinate
 protected float z;

 // construct 3-D point with given color
 public ColorPoint3D(float x,float y,float z,java.awt.Color c) {
 super(x, y, c);
 this.z = z;
 }

 // observers
 public float getZ() { return z; }

 public double distance() {
 return Math.sqrt(x*x + y*y + z*z);
 }
}
(Actual questions about all this code on the next pages. J)

 CSE 331 Final Exam 6/7/16

 Page 8 of 15

Question 5. (10 points) As mentioned above, these classes have the Java subtype
relationships implied by the code. The code compiles with no errors or warnings.
However it’s not entirely clear which classes are proper true subtypes of each other.

For each of the types below, circle the names of all the other types that are a proper, true
subtype of the given type, regardless of whether they are considered Java subtypes. You
should assume that there is no trickery in any of the specifications for any of the classes –
no hidden preconditions or exceptions or other unexpected things. Use the code to
determine the behavior of each type. (We omitted the full JavaDoc specifications since it
would have taken another 2 or 3 pages and would not have added any useful information
to what is implied by the code – apologies for the implicit “specification by
implementation” in this particular question.)

Every type is by definition a subtype of itself. That does not need to be included in the
answers.

(a) The following types are true subtypes of Point (circle):

 MutablePoint Point3D ColorPoint ColorPoint3D

(b) The following types are true subtypes of MutablePoint (circle):

 Point Point3D ColorPoint ColorPoint3D

(c) The following types are true subtypes of Point3D (circle):

 Point MutablePoint ColorPoint ColorPoint3D

(d) The following types are true subtypes of ColorPoint (circle):

 Point MutablePoint Point3D ColorPoint3D

(e) The following types are true subtypes of ColorPoint3D (circle):

 Point MutablePoint Point3D ColorPoint

 CSE 331 Final Exam 6/7/16

 Page 9 of 15

Question 6. (9 points) We would now like to create a class Rectangle using Points
as instance variables holding the coordinates of the Rectangle’s upper-left and lower-
right corners. The upper-left corner must be above and to the left of the lower-right
corner, i.e., the Rectangle must have width and height greater than 0.0.

Here is the beginning of Rectangle.java. You should fill in:

(a) The overview of the class in the comment above “class Rectangle”,
(b) A suitable rep invariant, and
(c) A suitable abstraction function.

(Do not worry about putting “//” or similar comment symbols in front of every line.)

/** Class Rectangle - add overview here
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
public class Rectangle {
 // rep: corners of the rectangle
 private Point ul; // upper-left corner
 private Point lr; // lower-right corner

 // rep invariant:

 // abstraction function:

 CSE 331 Final Exam 6/7/16

 Page 10 of 15

Question 7. (8 points) Specification & implementation. Our Rectangle class needs a
proper constructor to initialize the instance variables of a new Rectangle and to
guarantee that the new Rectangle is properly formed (i.e., the new Rectangle
satisfies its rep invariant).

Complete the JavaDoc specification and provide an appropriate implementation for the
constructor for this class. The heading for the constructor with appropriate parameters is
supplied below the JavaDoc comments. You need to supply the implementation and
decide the most appropriate way to handle any error conditions. You should leave any
unneeded parts in the JavaDoc comment blank.

 /** (add overview here)
 *
 *
 *
 *
 * @param ul upper-left corner of new Rectangle
 *
 * @param lr lower-right corner of new Rectangle
 *
 * @requires
 *
 *
 * @modifies
 *
 *
 * @effects
 *
 *
 * @throws
 *
 *
 * @returns
 *
 */
 public Rectangle(Point ul, Point lr) {

 }

 CSE 331 Final Exam 6/7/16

 Page 11 of 15

Question 8. (10 points, 2 each) hashCodes. We will assume that our Rectangle
class includes the following equals method:

 @Override
 public boolean equals(Object o) {
 if (! (o instanceof Rectangle))
 return false;
 Rectangle other = (Rectangle)o;
 return this.ul.equals(other.ul) && this.lr.equals(other.lr);
 }

Here are several possible hashCode methods for Rectangle. For each one, circle OK if
it is guaranteed to be a legal hashCode method for Rectangle, given the equals
method above. Circle ERROR if it does not satisfy the contract for hashCode. All of
these functions compile without errors or warnings.

Hint: we can’t make any assumptions about how Point’s equals method works, other
than it is consistent with Point’s hashCode method.

 OK ERROR int hashCode() { return 331; }

 OK ERROR int hashCode() { return ul.hashCode(); }

 OK ERROR int hashCode() { return ul.hashCode() +
 lr.hashCode(); }

 OK ERROR int hashCode() { return
 (int)Math.max(ul.hashCode(), lr.hashCode()); }

 OK ERROR int hashCode() { return
 (int)(ul.getX()+lr.getX()); }

 CSE 331 Final Exam 6/7/16

 Page 12 of 15

Question 9. (5 points) One of our major clients says that the new Rectangle class
would be much more useful if they could access the corners of a Rectangle. The new
intern, A. Hacker (back for yet another summer with us!), has proposed adding two new
observer methods to Rectangle to make this possible:

 /** return upper-left corner of this */
 public Point getUL() { return ul; }

 /** return lower-right corner of this */
 public Point getLR() { return lr; }

Some of the other programmers, having taken CSE 331 in the past, are worried that
adding these methods could have potential representation exposure problems.

Do these new methods create a rep exposure problem? Give a brief justification for your
answer.

 CSE 331 Final Exam 6/7/16

 Page 13 of 15

Question 10. (10 points, 1 each) Another oldie but goodie question. Given the Java class
listings on previous pages, we know that the following Java subclass relationships hold
between the various point classes:

MutablePoint extends Point Point3D extends Point
ColorPoint extends Point ColorPoint3D extends ColorPoint

Now suppose we have the following variables:

Object o;
Point p; Point3D p3d;
ColorPoint cp; ColorPoint3D cp3d;

List<? extends Point> lep;
List<? extends ColorPoint> lecp;
List<? super ColorPoint> lscp;

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR lep.add(p);

OK ERROR lep.add(cp);

OK ERROR lecp.add(cp3d);

OK ERROR lscp.add(cp);

OK ERROR lscp.add(null);

OK ERROR o = lep.get(1);

OK ERROR p = lep.get(1);

OK ERROR cp = lscp.get(1);

OK ERROR cp = lecp.get(1);

OK ERROR cp3d = lecp.get(1);

 CSE 331 Final Exam 6/7/16

 Page 14 of 15

Question 11. (5 points) A little graphics debugging. One of your friends is trying to
figure out Java Swing graphics, and he’s come up with the following tiny program to
draw an oval in a window on the screen.

public class Oval {

 public static void main(String[] args) {

 JFrame frame = new JFrame("A Window");

 JPanel panel = new SimplePainting();

 panel.setPreferredSize(new Dimension(300,200));

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.pack();

 frame.setVisible(true);

 }

}

class SimplePainting extends JPanel {

 @Override

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

 g2.setColor(Color.yellow);

 g2.fillOval(40,30,120,100);

 }

}

Unfortunately when the program runs the only thing that appears is the menu title bar:

What’s wrong? What needs to be done to the program so that the yellow oval is drawn
properly in the window? Indicate what code needs to be added/deleted/changed and
where the modification(s) need to be done. If you don’t remember the exact details of
some code that’s needed, be as clear as you can about what is needed and we’ll award
partial credit accordingly.

 CSE 331 Final Exam 6/7/16

 Page 15 of 15

Question 12. (5 points, 1 each) A last look at Campus Maps.

The HW9 Campus Paths application used the Model-View-Controller design pattern to
organize the code. As with all good software, we want to make some changes to it.

For each of the following possible changes, circle Model, View, and/or Controller to
indicate which component(s) of the application would need to be modified to implement
that change. Each part is worth 1 point. To get the point you need to circle exactly the
right answer(s).

You should answer the question based on a cleanly designed MVC organization for
Campus paths, even if your own code was somewhat different.

(a) Modify the shortest-path-finding algorithm (Dijkstra’s) to use integer edge weights
instead of doubles.

 Model View Controller

(b) Change the color of a path displayed on the map to blue.

 Model View Controller

(c) Remove the reset button from the application window and automatically reset the
picture whenever the user hits the delete key.

 Model View Controller

(d) Replace all uses of ArrayList in the graph implementation with LinkedList.

 Model View Controller

(e) Change the application so that building names are displayed in lower-case letters only.

 Model View Controller

Congratulations and have a great summer!!
The CSE 331 staff

