
 CSE 331 Midterm Exam 11/14/16

 Page 1 of 11

Name __

There are 9 questions worth a total of 110 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed mouth, open mind.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

For all of the questions involving proofs, assertions, invariants, and so forth, you should
assume that all numeric quantities are unbounded integers (i.e., overflow can not happen)
and that integer division is truncating division as in Java, i.e., 5/3 evaluates to 1.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 110

1. ______ / 12

2. ______ / 12

3. ______ / 12

4. ______ / 12

5. ______ / 16

6. ______ / 12

7. ______ / 12

8. ______ / 10

9. ______ / 12

 CSE 331 Midterm Exam 11/14/16

 Page 2 of 11

Remember: For all of the questions involving proofs, assertions, invariants, and so forth,
you should assume that all numeric quantities are unbounded integers (i.e., overflow can
not happen) and that integer division is truncating division as in Java, i.e., 5/3 => 1.

Question 1. (12 points) (Forward reasoning) Using forward reasoning, write an assertion
in each blank space indicating what is known about the program state at that point, given
the precondition and the previously executed statements. Your final answers should be
simplified. Be as specific as possible, but be sure to retain all relevant information.

(a) (5 points)
 { x != 0 }

 y = x * x;

 { _____________________________________ }

 x = y - 1;

 { _____________________________________ }

 x = x + y;

 { _____________________________________ }

(b) (7 points)
 { x > 3 && x < 10 }

 if (x > y)

 { _____________________________________ }

 y = x - 2;

 { _____________________________________ }

 else

 { _____________________________________ }

 y = y - x;

 { _____________________________________ }

 { __ }

 CSE 331 Midterm Exam 11/14/16

 Page 3 of 11

Question 2. (12 points) (assertions) Using backwards reasoning, find the weakest
precondition for each sequence of statements and postcondition below. Insert appropriate
assertions in each blank line. You should simplify your final answers if possible.

(a) (5 points)

 { _____________________________________ }

 y = x - 3;

 { _____________________________________ }

 z = y * 2;

 { _____________________________________ }

 z = z + 3;

 { z >= 4 }

(b) (7 points)

 { _____________________________________ }

 if (x != 0) {

 { _____________________________________ }

 x = 2 * x;

 { _____________________________________ }

 } else {

 { _____________________________________ }

 x = x + 1;

 { _____________________________________ }

 }

 { x != 0 }

 CSE 331 Midterm Exam 11/14/16

 Page 4 of 11

The next few questions concern the following partially complete Java class that was
begun by one of the summer interns who left before finishing the job. (Not a UW intern,
clearly.) The Department of Software Archeology and Reverse Engineering has turned to
you for help.

We know that the code is supposed to implement a bag of strings, i.e., a set that allows
duplicate elements, sometimes called a multiset. The representation uses an array to hold
the elements and has an associated integer variable to record the size of the bag (the
number of elements being used in the array). Presumably the array size will be adjusted
as needed if (when?) new elements are added to the bag. Here’s the code that we have:

import java.util.*;

public class StringBag {
 private int size; // # of strings in this bag
 private String[] items; // the strings

 // constructor
 public StringBag(String[] vals) {
 size = vals.length;
 items = Arrays.copyOf(vals, size); // new array copy of vals
 }

 // delete strings with length > n
 public void deleteLongStrings(int n) {
 int k = 0;
 while (k < size) {
 if (items[k].length() > n) {
 items[k] = items[size-1];
 size = size - 1;
 } else {
 k = k + 1;
 }
 }
 }

 // add string to bag (expand bag as needed) and return success
 public boolean add(String s) {
 // not implemented
 return false;
 }
}

In the following questions, assume that this code should work as currently written and
that it is correct as far as it goes. This code does compile and execute without errors.

Answer questions about this code on the next few pages. You can remove this page from
the exam for reference if you’d like.

 CSE 331 Midterm Exam 11/14/16

 Page 5 of 11

Question 3. (12 points) (a) (3 points) Give a suitable abstract description of the class as
would be written in the JavaDoc comment above the StringBag class heading.

(b) (5 points) Give a suitable Representation Invariant (RI) for this class. (Remember
that this RI should be sufficient to guarantee that the existing code executes successfully.)

(c) (4 points) Give a suitable Abstraction Function (AF) for this class relating the RI to
the abstract value of a StringBag.

 CSE 331 Midterm Exam 11/14/16

 Page 6 of 11

Question 4. (12 points) Specification. None of the methods in the StringBag are
specified properly. Below, supply proper JavaDoc comments for the constructor and
deleteLongStrings methods for the code on previous pages. Leave any unneeded
parts blank. The summary comments at the beginning of each JavaDoc block are
supplied for you. Hint: the answers probably won’t need all of this space.

 /** Construct a new StringBag with contents from the
 * given String array.
 *
 * @param vals
 *
 *
 * @requires
 *
 *
 * @modifies
 *
 *
 * @effects
 *
 *
 * @throws
 *
 *
 * @returns
 *
 */
 public StringBag(String[] vals) { constructor	implementation	omitted }

 /** Delete long strings from this Stringbag.
 *
 * @param n
 *
 *
 * @requires
 *
 *
 * @modifies
 *
 *
 * @effects
 *
 *
 * @throws
 *
 *
 * @returns
 *
 */
 public void deleteLongStrings(int n) { implementation	omitted }

 CSE 331 Midterm Exam 11/14/16

 Page 7 of 11

Question 5. (16 points) Proof. The implementation of deleteLongStrings seems
to be okay, but we’d like to be sure. For this problem, give a proof that the code works
properly. You will need to provide appropriate assertions, pre- and post-conditions, and
loop invariants for your proof. Write your proof in between the lines of code below

 // delete strings with length > n

 public void deleteLongStrings(int n) {

 int k = 0;

 while (k != size) {

 if (items[k].length() > n) {

 items[k] = items[size-1];

 size = size -1;

 } else {

 k = k + 1;

 }// end if

 } // end loop

 }

 CSE 331 Midterm Exam 11/14/16

 Page 8 of 11

Question 6. (12 points, 3 each) Testing. To increase our confidence that the code is
correct, we need testing to complement proofs and analysis. For this question, describe
four separate, distinct “black box” tests for the deleteLongStrings method that
you proved correct on the previous page. For each test give the input values and
expected result(s). You do not need to write JUnit tests or other Java code – just give a
precise, concise description. Also, don’t worry about what observer methods might exist
– it’s good enough to describe the abstract state of the set before and after the test.

(a)

(b)

(c)

(d)

 CSE 331 Midterm Exam 11/14/16

 Page 9 of 11

Question 7. (12 points) Something to add. The Software Archeology department is
happy with the work you’ve done so far. But they’ve discovered another client request
that will require an addition to the StringBag class. The client would like us to add an
observer method that returns an array with the Strings that are currently in the
StringBag. We would like to add the following method:

 // return the current strings in this StringBag to the caller
 public String[] getItems() {
 return items;
 }

(a) (4 points) Is this method correct? In other words, does it return the correct
information to the client?

(b) (4 points) Are there any potential representation exposure or other problems with this
method? If so, what can go wrong? If not, say so and give a brief reason.

(c) (4 points) If there are problems with this method (identified in parts (a) and/or (b)),
describe how to fix them and still provide an observer method that supplies the
information desired by the caller. Please describe briefly what needs to be done to fix the
problems. You do not need to write any code, but you can if it helps illustrate your
answer.

 CSE 331 Midterm Exam 11/14/16

 Page 10 of 11

Question 8. (10 points) Comparing specifications. This question does not concern the
StringBag ADT or any other code from the previous questions.

Here are parts of four possible specifications for a method that has a parameter n.

A. @param n
 @requires n % 2 = 0 && n > 0
 @return an integer > 0

B. @param n
 @requires n > 0
 @return an integer > 0

C. @param n
 @throws IllegalArgumentException if n % 2 != 0 or n <= 0
 @return an integer > 0

D. @param n
 @requires n > 0
 @return an integer >= 0

(a) List all of the specification that are stronger than A. _________________________

(b) List all of the specification that are stronger than B. _________________________

(c) List all of the specification that are stronger than C. _________________________

(d) List all of the specification that are stronger than D. _________________________

(e) Is it possible for a single method to satisfy A and B? (yes or no) ________

(f) Is it possible for a single method to satisfy A and C? (yes or no) ________

 CSE 331 Midterm Exam 11/14/16

 Page 11 of 11

Question 9. (12 points, 3 each) Overload? Override? You decide! Suppose we have
the following class and method definitions.

class A {
 void p(int n) { System.out.println("A.p(int)"); }
 void p(String s) { System.out.println("A.p(String)"); }
 void q() { System.out.println("A.q()"); }
}

class B extends A {
 void p() { System.out.println("B.p()"); }
 void p(int n) { p("hello"); System.out.println("B.p(int)"); }
 void r(double d) { System.out.println("B.r(double)"); }
}

class C extends B {
 void p(String s) { System.out.println("C.p(String)"); }
 void q(int n) { System.out.println("C.q(int)"); }
}

For each of the following groups of statements, write down the output produced when the
statements are executed or, if there is a compile-time or run-time error, explain in a
sentence what is wrong.

(a) C c1 = new C();
 c1.p(17);

(b) B b1 = new C();
 b1.q(17);

(c) B b2 = new B();
 A a2 = b2;
 a2.p(17);

(d) A a3 = new B();
 B b3 = a3;
 b3.r(3.14);

