
 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 1 of 10

Remember: For all of the questions involving proofs, assertions, invariants, and so forth,
you should assume that all numeric quantities are unbounded integers (i.e., overflow can
not happen) and that integer division is truncating division as in Java, i.e., 5/3 => 1.

Question 1. (12 points) (Forward reasoning) Using forward reasoning, write an assertion
in each blank space indicating what is known about the program state at that point, given
the precondition and the previously executed statements. Your final answers should be
simplified. Be as specific as possible, but be sure to retain all relevant information.

(a) (5 points)
 { x != 0 }

 y = x * x;

 { x != 0 && y = x*x } => y > 0

 x = y - 1;

 { x >= 0 && y = x0*x0 && y > 0 }

 x = x + y;

 { x > 0 && y = x0*x0 && y > 0 }

(Note: the important parts of the postcondition are the final values of x and y.)

(b) (7 points)
 { x > 3 && x < 10 }

 if (x > y)

 { x>3 && x<10 && x>y }

 y = x - 2;

 { x>3 && x<10 && y>1 && y<8 }

 else

 { x>3 && x<10 && x<=y }

 y = y - x;

 { x>3 && x<10 && y>=0 }

 { x>3 && x<10 && ((y>1 && y<8) || y>=0) }

(The final postcondition could be simplified further to { x>3 && x < 10 && y>=0 },
but for the test it was fine to leave it as shown above.)

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 2 of 10

Question 2. (12 points) (assertions) Using backwards reasoning, find the weakest
precondition for each sequence of statements and postcondition below. Insert appropriate
assertions in each blank line. You should simplify your final answers if possible.

(a) (5 points)

 { x-3 >= 1 } => x >= 4

 y = x - 3;

 { y*2 >= 1 } => y >= 1 (smallest integer value >= 0.5)

 z = y * 2;

 { z+3 >= 4 } => z >= 1

 z = z + 3;

 { z >= 4 }

(b) (7 points)

 { (x!=0 && x!=0) || (x=0 && x!=-1) }

 => (true || x=0) => true

 if (x != 0) {

 { 2*x != 0 } => x != 0

 x = 2 * x;

 { x != 0 }

 } else {

 { x+1 != 0 } => x != -1

 x = x + 1;

 { x != 0 }

 }

 { x != 0 }

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 3 of 10

The next few questions concern the following partially complete Java class that was
begun by one of the summer interns who left before finishing the job. (Not a UW intern,
clearly.) The Department of Software Archeology and Reverse Engineering has turned to
you for help.

We know that the code is supposed to implement a bag of strings, i.e., a set that allows
duplicate elements, sometimes called a multiset. The representation uses an array to hold
the elements and has an associated integer variable to record the size of the bag (the
number of elements being used in the array). Presumably the array size will be adjusted
as needed if (when?) new elements are added to the bag. Here’s the code that we have:

import java.util.*;

public class StringBag {
 private int size; // # of strings in this bag
 private String[] items; // the strings

 // constructor
 public StringBag(String[] vals) {
 size = vals.length;
 items = Arrays.copyOf(vals, size); // new array copy of vals
 }

 // delete strings with length > n
 public void deleteLongStrings(int n) {
 int k = 0;
 while (k < size) {
 if (items[k].length() > n) {
 items[k] = items[size-1];
 size = size - 1;
 } else {
 k = k + 1;
 }
 }
 }

 // add string to bag (expand bag as needed) and return success
 public boolean add(String s) {
 // not implemented
 return false;
 }
}

In the following questions, assume that this code should work as currently written and
that it is correct as far as it goes. This code does compile and execute without errors.

Answer questions about this code on the next few pages. You can remove this page from
the exam for reference if you’d like.

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 4 of 10

Question 3. (12 points) (a) (3 points) Give a suitable abstract description of the class as
would be written in the JavaDoc comment above the StringBag class heading.

A StringBag is an unordered collection of Strings that may contain duplicates
(i.e., a multiset or bag). A typical StringBag is {s1, …, sn}, or { } (the empty
StringBag).

(b) (5 points) Give a suitable Representation Invariant (RI) for this class. (Remember
that this RI should be sufficient to guarantee that the existing code executes successfully.)

items != null && 0 <= size <= items.length &&
for 0 <= k < size, items[k] != null

(It would also be possible to have a RI that allows items=null && size=0 if the
StringBag is empty, which is more complicated, but could be done.)

(c) (4 points) Give a suitable Abstraction Function (AF) for this class relating the RI to
the abstract value of a StringBag.

(Assuming the rep invariant given in (b)):

If size=0, this StringBag represents the empty bag { }, otherwise the strings in
items[0..size-1] represent the StringBag {items[0], ...,
items[size-1]}.

(Notes: The size=0 case above is redundant, but maybe helps the reader. If
size=0, then items[0..size-1] is an empty array section, which means there
are no elements in the StringBag. If items=null is allowed when size=0 (see
part(b), then the AF needs to describe that case as a representation of { }).

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 5 of 10

Question 4. (12 points) Specification. None of the methods in the StringBag are
specified properly. Below, supply proper JavaDoc comments for the constructor and
deleteLongStrings methods for the code on previous pages. Leave any unneeded
parts blank. The summary comments at the beginning of each JavaDoc block are
supplied for you. Hint: the answers probably won’t need all of this space.

 /** Construct a new StringBag with contents from the
 * given String array.
 *
 * @param vals array of strings whose elements are the initial
 * contents of this StringBag
 *
 * @requires vals != null && elements of vals not null(*)
 *
 * @modifies
 *
 * @effects makes a new StringBag with elements vals[0], ...,
 * vals[vals.length-1].
 *
 * @throws
 *
 * @returns
 *
 */
 public StringBag(String[] vals) { constructor	implementation	omitted }

*Note:	Other	code	(deleteLongStrings)	won’t	work	if	any	elements	are	null,	but	
this	is	subtle	enough	that	we	didn’t	take	off	points	if	that	case	was	missed.		However,	
vals	itself	cannot	be	null,	or	else	the	given	constructor	code	will	fail.	
	

 /** Delete long strings from this Stringbag.
 *
 * @param n maximum length of strings to be retained in this
 *
 * @requires
 *
 * @modifies this
 *
 * @effects all strings with length > n are removed from this
 *
 * @throws
 *
 * @returns
 *
 */
 public void deleteLongStrings(int n) { implementation	omitted }

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 6 of 10

Question 5. (16 points) Proof. The implementation of deleteLongStrings seems
to be okay, but we’d like to be sure. For this problem, give a proof that the code works
properly. You will need to provide appropriate assertions, pre- and post-conditions, and
loop invariants for your proof. Write your proof in between the lines of code below

 // delete strings with length > n

 public void deleteLongStrings(int n) {

 int k = 0;

 { inv: items[0..k-1] have length <= n and
 items[k..size-1] have unknown length }

 while (k != size) {

 { inv && k!= size }

 if (items[k].length() > n) {

 { inv && items[k].length > n }

 //	(note:	next	two	lines	effectively	delete	items[k]	from	this	StringBag)	

 items[k] = items[size-1];

 { inv }

 size = size -1;

 { inv } 	

 } else {

 {inv && items[k].length<=n} => {items[0..k] length <= n}

 k = k + 1;

 { inv }

 }// end if

 { inv }

 } // end loop

 { inv && k=size } => { items[0..size-1] have length <= n }

 }

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 7 of 10

Question 6. (12 points, 3 each) Testing. To increase our confidence that the code is
correct, we need testing to complement proofs and analysis. For this question, describe
four separate, distinct “black box” tests for the deleteLongStrings method that
you proved correct on the previous page. For each test give the input values and
expected result(s). You do not need to write JUnit tests or other Java code – just give a
precise, concise description. Also, don’t worry about what observer methods might exist
– it’s good enough to describe the abstract state of the set before and after the test.

There are, of course, many possible tests. Here are four.

(a) Initialize bag b to { “a”, “b”, “c” }
 b.deleteLongStrings(3)
 Verify that b contains { “a”, “b”, “c” }

(b) Initialize bag b to { “xyzzy”, “”, “ab”, “abcd”, “abcdefg” }
 b.deleteLongStrings(4)
 Verify that b contains {“”, “ab”, “abcd”}

(c) Initialize bag b to the empty bag { }
 b.deleteLongStrings(1)
 Verify that b is still the empty bag { }

(d) Initialize bag b to { “abcd”, “pqrstuv”, “wxyz” }
 b.deleteLongStrings(3)
 Verify that b is the empty bag { }

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 8 of 10

Question 7. (12 points) Something to add. The Software Archeology department is
happy with the work you’ve done so far. But they’ve discovered another client request
that will require an addition to the StringBag class. The client would like us to add an
observer method that returns an array with the Strings that are currently in the
StringBag. We would like to add the following method:

 // return the current strings in this StringBag to the caller
 public String[] getItems() {
 return items;
 }

(a) (4 points) Is this method correct? In other words, does it return the correct
information to the client?

No. It returns the entire contents of the items array, even though some or all of
the array elements might not be defined since they are in the section of the array
items[size..items.length-1], i.e., the part of the array that is not being
currently used.

(b) (4 points) Are there any potential representation exposure or other problems with this
method? If so, what can go wrong? If not, say so and give a brief reason.

Yes. Client code could alter the contents of the StringBag by modifying elements
of the returned array, and could cause store nulls in the array, which would violate
the representation invariant.

(c) (4 points) If there are problems with this method (identified in parts (a) and/or (b)),
describe how to fix them and still provide an observer method that supplies the
information desired by the caller. Please describe briefly what needs to be done to fix the
problems. You do not need to write any code, but you can if it helps illustrate your
answer.

The most reasonable solution is for getItems to allocate a new String array with
length equal to size, copy the contents of items[0..size-1] to the new array,
and return that new array to the caller. One good way to do this would be to write
return Arrays.copyOf(items,size);.

(Note: this does not create a representation exposure problem, since Strings are
immutable. There is no need to make copies of the strings themselves.)

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 9 of 10

Question 8. (10 points) Comparing specifications. This question does not concern the
StringBag ADT or any other code from the previous questions.

Here are parts of four possible specifications for a method that has a parameter n.

A. @param n
 @requires n % 2 = 0 && n > 0
 @return an integer > 0

B. @param n
 @requires n > 0
 @return an integer > 0

C. @param n
 @throws IllegalArgumentException if n % 2 != 0 or n <= 0
 @return an integer > 0

D. @param n
 @requires n > 0
 @return an integer >= 0

(a) List all of the specification that are stronger than A. __B, C__

(b) List all of the specification that are stronger than B. none

(c) List all of the specification that are stronger than C. none

(d) List all of the specification that are stronger than D. __B__

(e) Is it possible for a single method to satisfy A and B? (yes or no) yes

(f) Is it possible for a single method to satisfy A and C? (yes or no) yes

 CSE 331 Midterm Exam 11/14/16 Sample Solution

 Page 10 of 10

Question 9. (12 points, 3 each) Overload? Override? You decide! Suppose we have
the following class and method definitions.

class A {
 void p(int n) { System.out.println("A.p(int)"); }
 void p(String s) { System.out.println("A.p(String)"); }
 void q() { System.out.println("A.q()"); }
}

class B extends A {
 void p() { System.out.println("B.p()"); }
 void p(int n) { p("hello"); System.out.println("B.p(int)"); }
 void r(double d) { System.out.println("B.r(double)"); }
}

class C extends B {
 void p(String s) { System.out.println("C.p(String)"); }
 void q(int n) { System.out.println("C.q(int)"); }
}

For each of the following groups of statements, write down the output produced when the
statements are executed or, if there is a compile-time or run-time error, explain in a
sentence what is wrong.

(a) C c1 = new C();
 c1.p(17);

 C.p(String)
 B.p(int)

(b) B b1 = new C();
 b1.q(17);

 Error: no q(int) method in B

(c) B b2 = new B();
 A a2 = b2;
 a2.p(17);

 A.p(String)
 B.p(int)

(d) A a3 = new B();
 B b3 = a3;
 b3.r(3.14);
	
 Error: can’t assign a3 to b3 without a cast

