
Name:

CSE331 Winter 2014, Midterm Examination
February 12, 2014

Please do not turn the page until 10:30.

Rules:

• The exam is closed-book, closed-note, etc.

• Please stop promptly at 11:20.

• There are 100 points total, distributed unevenly among 9 questions (many with multiple parts):

Question Max Earned

1 11

2 13

3 20

4 10

5 20

6 12

7 6

8 6

9 2

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly
indicate what is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

This page does not contain a question. It has information related to many of the following
questions.

A running theme on this exam is collections of U.S. coins, which we call collectively “change.” As you
probably know, U.S. coins have these values:

coin name coin value
penny 1
nickel 5
dime 10
quarter 25

There are other obscure U.S. coins, but on this exam assume they do not exist.

In any collection of change, there is a non-negative number of each kind of coin. In general, there is no upper
limit on the number of each kind of coin.

Name:

1. (11 points) (Don’t miss that there is a part (b) below.)

(a) The code below has a provided post-condition. For this post-condition, use backward reasoning
to find the weakest precondition for each part of the code, filling in all six of the provided blanks.
Assume all variables hold integers. Simplify the overall pre-condition (the top-most blank) as
much as possible. Simplifying other assertions is fine but optional.

{ }

if(y > 5) {

{ }

x = y + 2;

{ }

else {

{ }

z = z - 1;

{ }

x = y + z;

{ }

}

{ x > 17 } (This is the provided post-condition.)

(b) What is the largest integer n such that the following statement is true? In all states satisfying
the initial precondition in your answer to part (a), either y ≥ n or z ≥ n or both.

Solution:
See next page.

Name:

(a) {y > 15 \/ (y <= 5 /\ y + z > 18)}

if(y > 5) {

{y > 15}

x = y + 2;

{x > 17}

} else {

{y + z > 18}

z = z - 1;

{y + z > 17}

x = y + z;

{x > 17}

}

{x > 17}

(b) 14 (assuming a correct answer to part (a))

Name:

2. (13 points) The code below takes an array of numbers and sums the penny and nickel values (ignoring
all other values). However, it “replaces 5 pennies with a nickel” such that the final value of p and n is
specified by the given post-condition.

Fill in the provided blanks to prove this program is correct. Put the loop invariant in the blank
starting “{inv:”. You do not need to do anything other than fill in the blanks, but you might write
assertions for other code points as “scratch work.” As in the provided post-condition, use the notation
count X in arr[Y..Z] to mean the number of times X occurs in the portion of arr between Y and Z

that includes Y and excludes Z.

{ true } // (lack of) initial pre-condition

p = 0;

n = 0;

i = 0;

{ }

{inv: }

--

while(i != arr.length) {

if(arr[i] == 1) {

p = p + 1;

if(p==5) {

p = 0;

{ }

n = n+1;

}

} else if(arr[i] == 5) {

n = n + 1;

} else {

// do nothing

}

{ }

--

i = i + 1;

}

{ p < 5 /\ p + 5*n = count 1 in arr[0..arr.length] + 5 * (count 5 in arr[0..arr.length])}

Solution:
See next page

Name:

There are various equivalent ways to write the assertions, so the answers need not be exactly what is
below.

{ true } // (lack of) initial pre-condition

p = 0;

n = 0;

i = 0;

{ p=0 /\ n=0 /\ i=0 }

{inv: p < 5 /\ p + 5*n = count 1 in arr[0..i] + 5 * count 5 in arr[0..i] }

while(i != arr.length) {

if(arr[i] == 1) {

p = p + 1;

if(p==5) {

p = 0;

{p = 0 /\ 5*n + 5 = count 1 in arr[0..(i+1)] + 5 * count 5 in arr[0..(i+1)]}

n = n+1;

}

} else if(arr[i] == 5) {

n = n + 1;

} else {

// do nothing

}

{ p < 5 /\ p + 5*n = count 1 in arr[0..(i+1)] + 5 * count 5 in arr[0..(i+1)] }

i = i + 1;

}

{ p < 5 /\ p * 5*n = count 1 in arr[0..arr.length] + 5 * (count 5 in arr[0..arr.length])}

Name:

3. (20 points) Consider designing a class whose instances are collections of U.S. coins. In this problem,
consider the partial implementation below where each element of the list in the coins field represents
a single coin, so, for example, if the collection has 6 quarters and 2 dimes, then the list would have 6
elements that are an Integer with value 25 and 2 elements that are an Integer with value 10. There
are no constraints on the order of elements.

class CoinPile {

private List<Integer> coins;

public CoinPile() {

coins = new ArrayList<Integer>();

}

... // many more methods for adding and removing coins, computing change, etc.

}

(a) Give a class description of abstract values implemented by CoinPile in terms of 4 specification
fields. Include a simple abstract invariant as appropriate.

(b) Give a representation invariant for instances of CoinPile.

(c) Give an abstraction function for instances of CoinPile.

(d) Suppose the class contains this method:

@returns a list of coins with one coin of value n for each coin in

this with value n (i.e., the list of coins in this)

public List<Integer> getCoins() {

return new ArrayList<Integer>(coins);

}

Does this method cause representation exposure? Explain your answer in 1–3 English sentences.

Solution:

(a) This class represents a collection of pennies, nickels, dimes, and quarters.
@specfield pennies : int // The number of pennies
@specfield nickels : int // The number of nickels
@specfield dimes : int // The number of dimes
@specfield quarters : int // The number of quarters

Abstract invariant: None of the specification fields are negative.

(b) coins is not null and every element in the list in coins has a value in the set {1, 5, 10, 25}.
(c) pennies is the number of elements of coins with value 1

nickels is the number of elements of coins with value 5
dimes is the number of elements of coins with value 10
quarters is the number of elements of coins with value 25

(d) No. We make a copy of the list so no aliasing occurs here. There is aliasing of the Integer objects
in the list, but Integer is an immutable class, so no rep exposure can occur. (Note: partial credit
for answering yes if the reason claims Integer is mutable.)

Name:

4. (10 points) This problem considers a different implementation of CoinPile from the previous problem.
Here, the implementation simply keeps counts of each kind of coin:

class CoinPile {

private int numPennies;

private int numNickels;

private int numDimes;

private int numQuarters;

public CoinPile() {

numPennies = 0;

numNickels = 0;

numDimes = 0;

numQuarters = 0;

}

... // many more methods for adding and removing coins, computing change, etc.

}

(a) Suppose we want two instances of CoinPile to be equal if and only if they (currently) have the
same of number of pennies as each other, the same number of nickels as each other, etc. Write an
appropriate equals method for the CoinPile class.

(b) Suppose:

• You also implement hashCode correctly with respect to the definition of equals in part (a).

• You then modify your program to change how equals behaves: now two instances are equal
if and only if the total value of all the coins (i.e., the amount of money represented) is equal.

Is it possible that hashCode also needs to change now? If so, explain why including an example
situation where not changing hashCode would be wrong. If not, explain why including a brief
informal proof. Note you are not asked to implement hashCode.

Solution:

(a) @override

public boolean equals(Object o) {

if(! o instanceof CoinPile)

return false;

CoinPile c = (CoinPile)o;

return numPennies == c.numPennies

&& numNickels == c.numNickels

&& numDimes == c.numDimes

&& numQuarters == c.numQuarters;

}

(b) Yes. Two objects that are equal must have the same hash-code. This change makes objects equal
that were not before, such as an object with (only) two quarters and an object with (only) five
dimes. We need a hashCode method that returns the same int for both objects.

Name:

5. (20 points) This problem considers a method makeChange that takes an int x and returns a CoinPile

(as described in either of the previous two problems) where the total amount of money in the CoinPile
equals x. For example, if x is 3, the CoinPile will have 3 pennies and no other coins.

Here are several possible specifications for makeChange:

A. @requires x is non-negative
@returns a CoinPile with total amount of money equal to x

B. @throws IllegalArgumentException if x is negative
@returns a CoinPile with total amount of money equal to x

C. @requires x is non-negative
@returns a CoinPile with total amount of money equal to x and containing as few coins as possible
(e.g., 1 dime instead of 2 nickels and never more than 5 pennies)

D. @throws IllegalArgumentException if x is negative
@returns a CoinPile with total amount of money equal to x and containing as few coins as possible
(e.g., 1 dime instead of 2 nickels and never more than 5 pennies)

E. @requires x is a non-negative multiple of 5
@returns a CoinPile with total amount of money equal to x and containing no pennies

(a) List all specifications above that are stronger than A.

(b) List all specifications above that are stronger than B.

(c) List all specifications above that are stronger than C.

(d) List all specifications above that are stronger than D.

(e) List all specifications above that are stronger than E.

Solution:

(a) B, C, D

(b) D

(c) D

(d) none

(e) C, D

Name:

6. (12 points) Suppose the makeChange method from the previous problem should satisfy specification
D. Consider testing makeChange. Suppose the implementor expects clients to often pass arguments
less than 100 (i.e., one dollar), so he/she uses a 100-element array of precomputed answers for such
arguments and a slower algorithm for larger arguments.

(a) Come up with a test-suite of five tests using a black-box methodology. Include a brief (probably
a few words) justification of how each test is likely to test something different. You can just write
the input, not the expected output. Note: there is nothing special about the number five — a
real test-suite would probably be larger.

(b) Come up with an additional three tests using a clear-box (white-box) methodology. Again briefly
justify choices and again you can just write the input, not the expected output.

Here is an example of a brief justification: “correct answer requires two dimes”

Solution:
Obviously answers can vary.

(a) -3 to make sure the right exception is thrown
0 to check this natural boundary condition
1 to check this natural boundary condition
30 because this is a case where the right answer is not the obvious one of 3 dimes
45 to check a situation more than 2 coins are needed and the minimal count is not obvious ...

(b) The point here is you need to add tests around the edge of the array, like 99, 100, and 101. It’s also
important to test larger numbers since any number less than 100 won’t test the non-precomputed-
answer algorithm, so inputs like 331 are also good choices.

Name:

7. (6 points) Identify two things wrong with this method specification:

/** Rounds its argument down to the nearest multiple of 5 (so that making

change for this amount will not require pennies). The code uses integer

division in a clever way.

@requires x is not negative

@returns the greatest multiple of 5 less than or equal to x

@throws IllegalArgumentException if x is negative

*/

int roundOutPennies(int x) {

if(x < 0)

throw new IllegalArgumentException();

return 5 * (x / 5);

}

Solution:

• The specification should not include implementation details like using integer division.

• The specification should not specify behavior for inputs that violate the precondition, so either
the @requires clause or the @throws clause should be removed.

We decided to accept a third answer that the spec did not include Javadoc’s @param tag even though
the spec above gives all the information you need about the one parameter. This was probably generous
of us.

Name:

8. (6 points)

Multiple choice related to assigned readings: Circle one answer for each question.

(a) Which is not a good situation for using Java for-each loops:

i. Mutating each element in an array (e.g., adding one to each element)

ii. Nested iteration, such as iterating over all the elements in an array of lists

iii. Printing each element of a standard-library Collection

iv. Summing all the elements of a very large array

(b) What is a goal of Design By Contract?

i. To make sure you do not start writing code until all methods have full specifications that
have been approved by the customer

ii. To make sure every method has at least one assert statement for each parameter

iii. To be able to blame a method’s caller if a pre-condition is violated for some method call

iv. To create legal responsibilities for software developers

(c) Making defensive copies of parameters is important for:

i. Constructors but no other methods

ii. Some methods but no constructors

iii. Both constructors and some other methods

iv. Methods that take no arguments

(d) Which is true about naming conventions (for variables, methods, classes, etc.)?

i. The standard Java compiler can check that you obey the well-known naming conventions.

ii. The same conventions hold for local variables, fields, and methods.

iii. Single-letter names are good style for (generic) type parameters.

iv. Inner classes should often contain the word “Inner” in their name.

Solution:

(a) (i)

(b) (iii)

(c) (iii)

(d) (iii)

Name:

9. (2 points) (Notice this is worth only 2 points, so skip it unless you have extra time.)

Consider a class OptimalCoinPile for piles of change that have as few coins as possible for the total
amount of money represented. For example, to represent 15 cents requires 1 dime and 1 nickel.

class OptimalCoinPile {

private int numPennies;

private int numNickels;

private int numDimes;

private int numQuarters;

...

}

Write a checkRep method that checks all the necessary properties without using a loop.

Solution:

private void checkRep() {

assert(pennies >=0 && pennies < 5);

assert(nickels >=0 && nickels < 2);

assert(dimes >=0 && dimes < 3); // quarter, nickel better than 3 dimes

assert(quarters >= 0);

assert(dimes < 2 || nickels == 0); // quarter better than 2 dimes, 1 nickel

}

There are other solutions that use integer division/modulus to check the same properties.

