
 CSE 331 Final Exam Sample Solution 6/10/14

 Page 1 of 12

Question 1. (8 points) Suppose we have several Java classes to represent students:

 class Student extends Object { ... }

 class CSEStudent extends Student { ... }

Now suppose we have the following variables (which we assume are initialized

elsewhere):

 List<Student> ls;

 List<? extends Student> les;

 List<? super Student> lss;

 List<CSEStudent> lcse;

 List<? extends CSEStudent> lecse;

 List<? super CSEStudent> lscse;

 Student scholar;

 CSEStudent hacker;

For each of the following, circle OK if the statement is legal or circle ERROR if the Java

type checker will indicate an error when it is compiled.

OK ERROR ls = lcse;

OK ERROR les = lscse;

OK ERROR lcse = lscse;

OK ERROR les.add(scholar)

OK ERROR lscse.add(scholar);

OK ERROR lss.add(hacker);

OK ERROR scholar = lscse.get(0);

OK ERROR hacker = lecse.get(0);

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 2 of 12

Question 2. (10 points) hashCodes. Suppose we have the following code for class

Student, including an equals function that considers two students to be “equal” if

they have the same graduation year and the same major:

public class Student {

 private String name;

 private int graduationYear;

 private String major;

 private List<String> minors;

 // two students are equal if they have the same

 // major and graduation year

 @Override

 public boolean equals(Object o) {

 if (!(o instanceof Student))

 return false;

 Student other = (Student) o;

 return this.graduationYear == other.graduationYear &&

 this.major.equals(other.major);

 }

}

(a) (8 points) For each of the following possible hashCode methods, circle OK if it is a

correct implementation of hashCode for this class. Circle ERROR if it is not correct.

OK ERROR public int hashCode() {
 return 31;

 }

OK ERROR public int hashCode() {
 return major.length() + graduationYear;

 }

OK ERROR public int hashCode() {

 return major.length() + name.length();

 }

OK ERROR public int hashCode() {
 return 31*graduationYear + major.length();

 }

(b) (2 points) Which of the above four methods is likely to yield the best quality

hashCode for this class? Give a 1- or 2-sentence justification for your answer.

The last one. It is more likely to produce different hash codes for Student objects

that are not equal.

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 3 of 12

Question 3. (7 points) Another generic question. One of the interns is trying to

implement a generic class to provide an expandable container, somewhat like a list. One

of the methods is supposed to expand the underlying array so it has at least as many

elements as required. Here is that portion of the code:

class ExpandableContainer<E> {

 E[] items; // instance variable

 // ensure that items has room for at least n

 // elements and expand it if it doesn’t

 public void ensureCapacity(int n) {

 if (n <= items.length)

 return;

 // allocate a new array that has n elements

 E[] newItems = new E[n];

 for (int i = 0; i < items.length; i++)

 newItems[i] = items[i];

 items = newItems;

 }

}

Unfortunately, this code doesn’t compile. (a) (4 points) In the above code, show where

the error or errors are located and briefly describe them. Then show how to fix them so

the code will compile without errors. (Do not rewrite the method – just show the

relatively small fixes needed.)

(b) (3 points) After your repairs have been made to the code, will the code compile

without any warning messages? If not, what warnings would the compiler produce and

where, and is there any way to eliminate them?

No. The compiler will still produce an “unchecked cast” warning for the (E[]) cast

in the repaired code. A @SuppressWarnings('unchecked') annotation can

be used to suppress the message, but the underlying cause is still there. The cast

cannot be checked at runtime because the generic type information is erased.

(a) Error: cannot create an

array of generic type. To

fix, replace this with:

(E[])new Object[n];

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 4 of 12

Question 4. (10 points) Exceptions and assertions. Here are parts of three possible

specifications for a method to calculate square roots:

SA // requires: x >= 0

 // returns: approximation to sqrt(x)

SB // returns: approximation to sqrt(x)

 // throws: IllegalArgumentException if x < 0

SC // returns: approximation to sqrt(x) if x >= 0

 // or Double.NaN (not-a-number) if x < 0

And here are two possible implementations of a routine to calculate square roots.

IMP1 double sqrt(double x) {

 if (x < 0) throw new IllegalArgumentException();

 return approximation to square root of x;
 }

IMP2 double sqrt(double x) {

 if (x < 0)

 return Double.NaN;

 else

 return approximation to square root of x;
 }

(a) (6 points) In the table below, put an X in each square where the implementation to the

left satisfies the specification given at the top

 SA SB SC

IMP1 X X

IMP2 X X

(b) (4 points) Of the three specifications given above, which would be most suitable to be

included in a general-purpose library intended for wide use, like the Java Math class, and

why? Give a 1- or 2-sentence justification for your answer. If two or more of the

specifications are equally good, give a justification for that answer.

Either SB or SC would be better than SA since they are stronger specifications that

specify behavior for all possible inputs rather than allowing unpredictable operation

if the client fails to meet the precondition in SA.

[Which one is best depends on how the library is to be used and whether an

exceptional value (NaN) is preferred to producing an exception if the input is

negative. The Java Math.sqrt library routine uses SC.]

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 5 of 12

Question 5. (8 points) The Java Collection classes allow users to wrap a collection so it

can be viewed but not modified. Suppose we have a list lst that has type List<Foo>

for some unknown type Foo. We then execute the statement

 List<Foo> unlst = Collections.unmodifiableList(lst);

The new variable unlst can be used to view the contents of the original list, but if any

method is called to attempt to change it (for example unlst.add(x) or

unlst.remove(y)) an UnsupportedOperationException is thrown.

(a) (4 points) Clearly, both lst and unlst have the same Java type List<Foo>. But

do these lists have exactly the same true specification type? Is the type of one of these

lists a true subtype of the other? Or are the actual types of the lists incomparable (i.e.,

neither is a true subtype of the other)? Give a brief explanation.

The unmodifiableList does not have the same true specification as the original

List. They have different specifications for mutator methods like add() and

remove(). Neither specification is a stronger or weaker version of the other – they

are not comparable (i.e., invariant).

(b) (4 points) Suppose that the original variable lst was a private instance variable in a

class, and the class includes an observer method that returns the unmodifiable list unlst

created as in part (a) above. Are there any potential representation exposure problems

with this method?

Yes, there is a representation exposure problem if the items stored in the list are

mutable. In that case client code could modify individual list elements even though

it cannot modify the list itself.

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 6 of 12

Question 6. (12 points) Swing! Here is most of the code for a small application that

displays two buttons in a window. You need to complete some code to get the

application to print the correct messages when the buttons are clicked.

public class Buttons {

 public static void main (String[] args) {

 JFrame frame = new JFrame("Finals");

 frame.setDefaultCloseOperation(

 WindowConstants.EXIT_ON_CLOSE);

 JButton button1 = new JButton("button1");

 button1.setActionCommand("uno");

 JButton button2 = new JButton("button2");

 button2.setActionCommand("duo");

 ButtonListener buttonListener = new ButtonListener();

 frame.add(button1, BorderLayout.NORTH);

 frame.add(button2, BorderLayout.SOUTH);

 frame.pack();

 frame.setVisible(true);

 }

}

(Class ButtonListener will be implemented on the next page.)

(a) (5 points) Write code in the blank box above so that when either button is clicked the

object named buttonListener will be notified that a click has occurred. (This does

not require much code at all – we just left a lot of space in case you need it.)

// make buttonListener the listener object for button1 and button2

button1.addActionListener(buttonListener);

button2.addActionListener(buttonListener);

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 7 of 12

Question 6. (cont.) (b) (7 points) Fill in the body of class ButtonListener below

so whenever button1 is clicked the message “button1 rocks!” is printed on

System.out and whenever button2 is clicked the message “button2 rules!” is

printed on System.out.

class ButtonListener implements ActionListener {

 // write your code below

 public void actionPerformed(ActionEvent e) {

 if (e.getActionCommand().equals("uno")) {

 System.out.println("button1 rocks!");

 } else if (e.getActionCommand().equals("duo")) {

 System.out.println("button2 rules!");

 }

 }

}

A bit of reference information:

The Java library interface ActionListener includes just this one method:

 void actionPerformed(ActionEvent e)

Class ActionEvent contains the following methods:

 String getActionCommand()

 int getModifiers()

 long getWhen()

 String paramString()

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 8 of 12

Question 7. (10 points) Suppose we are building a program to play Chess. Being

conscientious CSE 331 graduates, we’re using the Model-View-Controller (MVC)

pattern to structure our code.

For each of the following operations that are part of the program, indicate which part of

the MVC architecture would implement that operation by circling M, V, and/or C. If

more than one part of the architecture would be responsible for that part of the program

circle all of the parts. If none of the parts of the architecture apply, leave the answer

blank.

M V C Move a piece across the screen as the player drags it around with the mouse.

M V C Determine if a proposed move made by the player is legal.

M V C Provide a chat box so the player can talk to his/her opponent.

M V C Compute the next move to be made when the computer is one of the players.

M V C Draw the game board on the screen.

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 9 of 12

Question 8. (4 points) What is the key difference between testing and debugging? Or

are they really the same thing? (Be brief, please)

Testing is the process of demonstrating the existence of defects or providing

confidence that they do not appear to be present.

Debugging is the process of discovering the cause of a defect and fixing it.

Question 9. (4 points) When fixing a bug, a key step is to create a small test case that

demonstrates the problem. Conventional wisdom says that you should then add that test

to the permanent test suite to use as a regression test in the future. Why? Doesn’t this

just add useless bulk to the collection of tests? (A couple of sentences should be enough

to answer.)

If a bug occurs it is because of some error or misunderstanding. As the code is

modified in the future, there’s a decent chance that the same error might be

introduced again for the same reasons, or because the person working on the code is

not aware of or has forgotten the past history. Adding the test to the permanent

collection increases confidence that future changes do not re-introduced the old

problem.

Further, if there is a bug and no test caught the problem previously then some part

of the input domain was not properly covered by a test. Retaining the test will

provide better coverage for that part of the input domain.

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 10 of 12

Question 10. (10 points) Testing. Suppose we have the following method in one of our

classes:

 // Given non-negative integer n, return n!

 int factorial(int n) {

 int num = n;

 int fac = 1;

 while (num != 1) {

 fac *= num;

 num--;

 }

 return fac;

 }

For some reason this method goes into an infinite loop every now and then and it is

necessary to kill the program to get it to stop.

(a) (7 points) Produce a simple, small test case to demonstrate the failure. Complete the

following jUnit test so it will reproduce the problem.

 @Test(timeout=1000)

 public void testFactorialNonTermination() {

 int result = factorial(0);

 assertEquals("factorial(0)", 1, result);

 }

(b) (3 points) What is the cause of the problem? Indicate the problem by writing on the

code above and show how it to fix it.

(b) To fix the bug,

change 1 to 0 here.

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 11 of 12

Question 11. (5 points) System design and implementation. The two main strategies for

implementing a complex system are top-down and bottom-up. These two strategies have

different strengths. For each of the statements below, circle top-down or bottom-up to

indicate which implementation strategy is the best match. If both strategies are equally

good, circle both. You do not need to justify your answers.

Better at showing visible progress (i.e, demos and prototypes) to customers and

implementers.

 top-down bottom-up

Likely to require more non-deliverable code (tests, stubs, drivers, mock objects)

 top-down bottom-up

Better at revealing possible resource problems or performance bottlenecks early in the

project.

 top-down bottom-up

Better at revealing problems with basic design decisions early in the project.

 top-down bottom-up

Potentially can require more effort to integrate each new component as it becomes

available.

 top-down bottom-up

Question 12. (4 points) IDEs like Eclipse have built-in tools to automate program

compilation and the other steps needed to build a program. Why then do most projects

also use an external build tool like ant or make? Why not just let the IDE take care of the

job and handle the work needed to build things? (Be brief – a sentence or two is enough

to get the main ideas across.)

It is important that everyone on a project use a reproducible build process.

Otherwise there can be problems if different IDEs, or even different versions of the

same IDE, build the project in slightly different ways, leading to subtle differences

and hard-to-diagnose bugs.

 CSE 331 Final Exam Sample Solution 6/10/14

 Page 12 of 12

Question 13. (8 points) Design patterns – the traditional last question. Here is an

alphabetical list of some design patterns we studied. Note that some patterns are more

specific instances of others.

Adapter, Builder, Composite, Decorator, Factory, Flyweight, Iterator, Intern, Interpreter,

Model-View-Controller (MVC), Observer, Procedural, Prototype, Proxy, Singleton,

Visitor, Wrapper

For each of the situations below, list all of the design pattern or patterns from the list that

are used in that situation. (There is at least one pattern that is appropriate for each.)

(a) Add a scroll bar to an existing window object in Swing.

 Decorator

(b) We have an existing object that controls a communications channel. We would like to

provide the same interface to clients but transmit and receive encrypted data over the

existing channel.

 Proxy

(c) We have a computer simulation of a bicycle involving wheels, spokes, and so forth,

and we want to be able to treat all of these parts and subassemblies of the bicycle

uniformly as bicycle components in some parts of the code.

 Composite

(d) When the user clicks the “find path” button in the Campus Maps application (hw9),

the path appears on the screen.

 MVC and Observer

In retrospect it was probably a mistake to say “list all patterns that apply to this

situation” since many answers we read included the right answer along with a

bunch of patterns that were at best tangentially related to the situation but usually

were not relevant at all. We did give partial credit in those situations when it

seemed appropriate.

Have a great summer! See you in the fall!!

