Section 7:
Dijkstra’s Algorithm

Slides adapted from Alex Mariakakis with
material by Kellen Donohue, David Mailhot,
Dan Grossman, Mike Ernst, Michael Hart, and
Jacob Murphy

Review: Shortest Paths with BFS

From Node B

Destination Path Cost

A <B,A> 1

0
<B,A,C> 2
1
2

<B,D>
<B,D,E>

m O O @

Review: Shortest Paths with BFS

From Node B

Destination Path Cost

A <B,A> 1

0
<B,A,C> 2
1
2

<B,D>
<B,D,E>

m O O

Shortest Paths with Weights

B->E=1067?

How can we find the shortest
path with weights?

Shortest Paths with Weights

From Node B

Destination Path Cost

A <B,A> 2

0
<B,A,C> 5
7
7

<B,A,C,D>
<B,A,C,E>

m O O @

BES vs. Dijkstra’s Algorithm

100 100
100 100

500

BFS can find the most direct path, but not necessarily the shortest path!

Note that Dijkstra’s Algorithm only works if there is not a negative cycle

Dijkstra’s Algorithm

Named after its inventor Edsger Dijkstra (1930-2002)

> Among his contributions to the growing CS community was his work on

Operating Systems, in which he motivated the design and structure of a
large project, not just the code

The Algorithm: similar to BFS, but incorporating weights

> Create a set of nodes to examine next, but instead of using the node that
was next in line, use the node with the shortest distance

> How can you find the node with the shortest distance so far?
Priority Queues (explained later)

Dijkstra’s Algorithm

Give a node two fields: cost and finished, cost gives an upper
bound to the distance from the origin to that node, and finished
describing if the cost of the node is the minimum cost of travelling to
that node.

1. Foreachnodev,set v.cost = e andv.finished = false
/. Setsource.cost = 0 (sourceisthe starting node of our path)

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as finalized
c) Foreach edge (v, u) with weight w,
cl = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known

if (¢l < c2) // if the new path through v is better,update

u.cost = cl

u.path = v // add v to the nodes u has traversed

Example #1

0

Goal: Find the best paths
from A to the other nodes

vertex | known? cost path
A Y 0

Order Added to Known Set:

T|IO|MM OO |
8

vertex | known? cost path
A Y 0

<2 A
<1 A
<4 A

Order Added to Known Set:

A

T|IO|MM OO |

vertex | known? cost path
A Y 0

<2 A
Y 1 A
<4 A

Order Added to Known Set:

A C

T|IO|MM OO |

Example #1

known? cost path

Order Added to Known Set:

<
O(>|>|>

A C

known? cost path

<
O(>|>|>

Order Added to Known Set:

A CB

Example #1

2

4 vertex | known? cost path

Order Added to Known Set:

I
.
DO > >

A CB

Example #1

2

4 vertex | known? cost path
7 12
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A CB,D F <4 B
G
H

2

Example #

Order Added to Known Set:

A CB,D,F

1

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G

H

2

Example #

Order Added to Known Set:

A CB,D,F

1

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G

H

Example #1

0 2

4 vertex | known? cost path
7 12
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A CB,D,FH F Y 4 B
G
H

Example #1

0 2

4 vertex | known? cost path

<<=

Order Added to Known Set:

<

A CB,D,FH

N
MIZT|@O|>[>|>

Example #1

2
0 ’) 4 3 7
d
4 / E 12 1 vertex | known? | cost path
A Y 0

<<=

Order Added to Known Set:

A, CB,D,F H,G

<

.<
~N|lo| Mol
N
MIZT|@O|>[>|>

Example #1

2
0 ’) 4 3 7
d
4 / E r 1 vertex | known? | cost path
A Y 0

<<=

Order Added to Known Set:

A, CB,D,F H,G

<

.<
~N|lo| Mol
MIT|WO|>[>|>

Example #1

0

2

Order Added to Known Set:

A CB,D,FHG,E

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Example #2

2

Order Added to Known Set:

vertex | known? cost path
A Y 0
B o0
C o0
D o0
E 00
F 0
G 00

Example #2

2

Order Added to Known Set:

A D,CEB,FG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

Pseudocode

// pre-condition: start is the node to start at

// initialize things

active = new empty priority queue of paths
from start to a giliven node
// A path's “priority” in the queue is the total
// cost of that path.

finished = new empty set of nodes
// Holds nodes for which we know the

// minimum-cost path from start.

// We know path start->start has cost 0
Add a path from start to itself to active

Pseudocode (cont.)

while active is non-empty:
minPath = active.removeMin ()
minDest = destination node in minPath

if minDest is in finished:

continue

for each edge e = (minDest, child):
if child is not in finished:
newPath = minPath + e

add newPath to active

add minDest to finished

Priority Queue

Given a set of weighted paths, find the shortest path

Increase efficiency by considering lowest cost unknown
vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by
lowest value instead of FIFO

Priority Queue

Increase efficiency by considering lowest cost unknown
vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by
lowest value instead of FIFO

Two ways to implement:
1. Comparable

a) class Node implements Comparable<Node>
b) public int compareTo(other)
2. Comparator
a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

