Section 6: Breadth-first Search

SLIDES ADAPTED FROM ALEX MARIAKAKIS,
WITH MATERIAL FROM KRYSTA YOUSOUFIAN, MIKE ERNST, KELLEN DONOHUE

How is Homework 5 going?

Any questions?

Agenda

* Breadth-first search (BFS)

Graphs

Can I reach B from A?

- Often used for discovering connectivity
- Calculates the shortest path

if and only if all edges have same positive or no weight

Depth-first search (DFS) is commonly mentioned with BFS

Starting at **A**, which nodes will be visited first in a BFS?

Starting at A, which nodes will be visited first in a BFS? B, C, D

Starting at **A**, which nodes will be visited second in a BFS?

Starting at A, which nodes will be visited second in a BFS? E, F, G

BFS Pseudocode

return false

START:

Q: <A>

Pop: A, Q: <>

Q: <B, C>

Pop: B, Q: <C>

Q: <C>

Pop: C, Q: <C>

Q: <>

DONE

Starting at A

Goal: C

Breadth-First Search with Cycle

START:

Q: <A>

Pop: A, Q: <>

Q:

Pop: B, Q: <>

Q: <C>

Pop: C, Q: <>

Q: <A>

NEVER DONE

Starting at A

Goal: D

BFS Pseudocode

N:

```
boolean bfs (Node start, Node goal):
   put start in a queue
      while (queue is not empty):
             pop node N off queue
            mark node N as visited Mark the node
             if (N is goal):
                   return true
                                      as visited!
             else:
                   for each node \boldsymbol{c} that is child of
                          if C is not marked
visited:
                            push C onto queue
      return false
```

Problem: Find everything reachable from A

Q: <>

Q: <>

Q: <A>

Q: <>

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <E>

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <E>

DONE

Shortest Paths with BFS

From Node B

Destination	Path	Cost
Α		
В		0
С		
D		
E		

Shortest path to D? to E? What are the costs?

Shortest Paths with BFS

From Node B

Destination	Path	Cost
Α	<b,a></b,a>	1
В		0
С		
D	<b,d></b,d>	1
Е		

Shortest path to D? to E? What are the costs?

Shortest Paths with BFS

From Node B

Destination	Path	Cost
А	<b,a></b,a>	1
В		0
С	<b,a,c></b,a,c>	2
D	<b,d></b,d>	1
Е	<b,d,e></b,d,e>	2

Shortest path to D? to E? What are the costs?

Shortest Paths with Weights

Shortest Paths with Weights

