

Section 5: Design
Patterns, Verification

Adapted from material by Alex Mariakakis, Krysta
Yousoufian, David Mailhot, Hal Perkins, Mike Ernst,

and others

What is a design pattern?

• A standard solution to a common programming
problem

• A technique for making code more flexible

• Shorthand for describing program design and how
program components are connected

Creational Patterns

• Problem: Constructors in Java are not flexible
o Always return a fresh new object, never reuse one
o Can’t return a subtype of the class they belong to

• Solution: Creational patterns!
o Factories

• Factory method
• Factory object

o Builder

o Sharing
• Singleton
• Interning
• Flyweight

Factory

• Suppose we want a constructor for Set that takes a
list as a parameter, and produces a TreeSet if the
list is sorted, and a HashSet otherwise.

• Is this possible?

Creational Patterns: Factory

• Factories solve the problem that Java constructors
cannot return a subtype of the class they belong to

• Two options:
o Factory method

• Helper method creates and returns objects
• Method defines the interface for creating an object, but defers

instantiation to subclasses

o Factory object
• Abstract superclass defines what can be customized
• Concrete subclass does the customization, returns appropriate

subclass

Factory Method

public static Set produceSet(List list) {

if (isSorted(list)) {

return new TreeSet(list);

} else {

return new HashSet(list);

}

}

Factory Object

interface SetFactory {

Set getSet();

}

class HashSetFactory implements SetFactory {

public Set getSet() {

return new HashSet();

}

}

Creational Patterns: Builder

• The class has an inner class Builder and is created
using the Builder instead of the constructor

• The Builder takes optional parameters via setter
methods (e.g., setX(), setY(), etc.)

• When the client is done supplying parameters, she calls
build() on the Builder, finalizing the builder and
returning an instance of the object desired

• Useful when you have many constructor parameters
o It is hard to remember which order they should all go in

• Easily allows for optional parameters
o If you have n optional parameters, you need 2^n constructors,

but only one builder

Builder
public class NutritionFacts {

// required
private final int servingSize, servings;

// optional
private final int calories, fat, sodium;

public NutritionFacts(int servingSize, int servings) {
this(servingSize, servings, 0);

}

public NutritionFacts(int servingSize, int servings, int calories) {
this(servingSize, servings, calories, 0);

}

public NutritionFacts(int servingSize, int servings, int calories, int fat) {
this(servingSize, servings, calories, fat, 0);

}

…

public NutritionFacts(int servingSize, int servings, int calories, int fat,
int sodium) {

this.servingSize = servingSize;
this.servings = servings;
this.calories = calories;
this.fat = fat;
this.sodium = sodium;

}
}

Builder
public class NutritionFacts {

private final int servingSize, servings, calories, fat, sodium;

public static class Builder {
// required
private int servingSize, servings;

// optional, initialized to default values
private int calories = 0;
private int fat = 0;
private int sodium = 0;

public Builder(int servingSize, int servings) {
this.servingSize = servingSize;
this.servings = servings;

}

public Builder calories(int val) { calories = val; return this; }
public Builder fat(int val) { fat = val; return this; }
public Builder sodium(int val) { sodium = val; return this; }
public NutritionFacts build() { return new NutritionFacts(this); }

}

public NutritionFacts(Builder builder) {
this.servingSize = builder.servingSize;
this.servings = builder.servings;
this.calories = builder.calories;
this.fat = builder.fat;
this.sodium = builder.sodium;

}
}

Creational Patterns: Sharing

• The old way: Java constructors always create a new
object

• Singleton: only one object exists at runtime
• Interning: only one object with a particular

(abstract) value exists at runtime
• Flyweight: separate intrinsic and extrinsic state,

represents them separately, and interns the
intrinsic state

• Not discussing this pattern in section

Singleton

• For a class where only one object of that class can
ever exist

• "Ensure a class has only one instance, and provide
a global point of access to it." -- GoF, Design
Patterns

• Two possible implementations
o Eager initialization: creates the instance when the class is

loaded to guarantee availability
o Lazy initialization: only creates the instance once it’s

needed to avoid unnecessary creation

Singleton

Eager initialization

public class Bank {
private static Bank INSTANCE = new Bank();

// private constructor
private Bank() { … }

// factory method
public static Bank getInstance() {

return INSTANCE;
}

}

Bank b = new Bank();
Bank b = Bank.getInstance();

Singleton

Lazy initialization

public class Bank {
private static Bank INSTANCE;

// private constructor
private Bank() { … }

// factory method
public static Bank getInstance() {

if (INSTANCE == null) {
INSTANCE = new Bank();

}
return INSTANCE;

}
}

Bank b = new Bank();
Bank b = Bank.getInstance();

Singleton

• Would you prefer eager or lazy instantiation for an
HTTPRequest class?
o handles authentication
o definitely needed for any HTTP transaction

• Would you prefer eager or lazy instantiation for a
Comparator class?
o compares objects
o may or may not be used at runtime

Singleton

public class HttpRequest {
private static class HttpRequestHolder {

public static final HttpRequest INSTANCE =
new HttpRequest();

}

/* Singleton – Don’t instantiate */
private HttpRequest() { … }

public static HttpRequest getInstance() {
return HttpRequestHolder.INSTANCE;

}
}

Singleton

public class LengthComparator implements Comparator<String> {
private int compare(String s1, String s2) {

return s1.length()-s2.length();
}

/* Singleton – Don’t instantiate */
private LengthComparator() { … }
private static LengthComparator comp = null;

public static LengthComparator getInstance() {
if (comp == null) {

comp = new LengthComparator();
}
return comp;

}
}

Interning

• Similar to Singleton, except instead of just having
one object per class, there’s one object per
abstract value of the class

• Saves memory by compacting multiple copies

Interning

public class Point {
private int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() { return x; }
public int getY() { return y; }

@Override
public String toString() {

return “(” + x + “,” + y + “)”;
}

}

Interning

public class Point {
private static Map<String, Point> instances =

new WeakHashMap<String, Point>();

public static Point getInstance(int x, int y) {
String key = x + “,”, + y;
if (!instances.containsKey(key))

instances.put(key, new Point(x,y));
return instances.get(key);

}

private final int x, y; // immutable
private Point(int x, int y) {…}

}
Requires the class being interned to be immutable. Why?

Interning

• What if Points were represented in polar
coordinates?

• What further checks are necessary to make sure
these kinds of Points are interned correctly?

Interning

public class Point {
private static Map<String, Point> instances =

new WeakHashMap<String, Point>();

public static Point getInstance(double r, double theta) {
double normalizedTheta = normalize(theta);
String key = r + “,” + normalizedTheta;
if (!instances.containsKey(key))

instances.put(key, new Point(r,
normalizedTheta));

return instances.get(key);
}
private final double r, theta; // immutable
private Point(double r, double theta) {...}

}
Why do we need to normalize?

Exercise

• Class that represents an individual person
• Interning?

• Note mutability

• We want to create multiple MazeGames that each
use different types of room styles.
• Factory

• Construct an object representing a computer that
has lots of options (with some defaults)
• Builder

Verification!

• Nullness checker for all your previous HW

• Demo
• http://eisop.uwaterloo.ca/live#mode=edit

http://eisop.uwaterloo.ca/live#mode=edit

