2
-

(]

.,
I

/4

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed




Section 5: Design
Patterns, Verification

Adapted from material by Alex Mariakakis, Krysta
Yousoufian, David Mailhot, Hal Perkins, Mike Ernst,
and others



What is a design pattern?

* A standard solution to a common programming
problem

* A technique for making code more flexible

* Shorthand for describing program design and how
program components are connected



Creational Patterns

- Problem: Constructors in Java are not flexible
o Always return a fresh new object, never reuse one
o Can’t return a subtype of the class they belong to

- Solution: Creational patterns!

o Factories
« Factory method
- Factory object

o Builder

o Sharing
* Singleton
* Interning
Flyweight



Factory

« Suppose we want a constructor for Set that takes a
ist as a parameter, and produces a TreeSet if the
ist is sorted, and a HashSet otherwise.

« |Is this possible?




Creational Patterns: Factory

- Factories solve the problem that Java constructors
cannot return a subtype of the class they belong to

- Two options:

o Factory method
* Helper method creates and returns objects
* Method defines the interface for creating an object, but defers
instantiation to subclasses
o Factory object
* Abstract superclass defines what can be customized

* Concrete subclass does the customization, returns appropriate
subclass



Factory Method

public static Set produceSet (List 1list) {
i1f (isSorted(list)) {
return new TreeSet(list);
} else {

return new HashSet(list);



Factory Object

interface SetFactory {
Set getSet();
}
class HashSetFactory implements SetFactory {
public Set getSet () {
return new HashSet () ;

}



Creational Patterns: Builder

* The class has an inner class Builder and is created
using the Builder instead of the constructor

* The Builder takes optional parameters via setter
methods (e.g., setX(), setY(), etc.)

* When the client is done supplying parameters, she calls
build() onthe Builder, finalizing the builder and
returning an instance of the object desired

* Useful when you have many constructor parameters
o Itis hard to remember which order they should all go in

* Easily allows for optional parameters

o If you have n optional parameters, you need 2*n constructors,
but only one builder



Builder

public class NutritionFacts {
// required
private final int servingSize, servings;

// optional
private final int calories, fat, sodium;

public NutritionFacts(int servingSize, int servings) {
this(servingSize, servings, 9);
}

public NutritionFacts(int servingSize, int servings, int calories) {
this(servingSize, servings, calories, 0);
}

public NutritionFacts(int servingSize, int servings, int calories, int fat) {
this(servingSize, servings, calories, fat, 0);
}

public NutritionFacts(int servingSize, int servings, int calories, int fat,
int sodium) {

this.servingSize = servingSize;
this.servings = servings;
this.calories = calories;
this.fat = fat;
this.sodium = sodium;



Builder

public class NutritionFacts {
private final int servingSize, servings, calories, fat, sodium;

public static class Builder {
// required
private int servingSize, servings;

// optional, initialized to default values
private int calories = 0;

private int fat = 0;

private int sodium = 0;

public Builder(int servingSize, int servings) {
this.servingSize = servingSize;
this.servings = servings;

}

public Builder calories(int val) { calories = val; return this; }
public Builder fat(int val) { fat = val; return this; }

public Builder sodium(int val) { sodium = val; return this;

public NutritionFacts build() { return new NutritionFacts(this); }

}

public NutritionFacts(Builder builder) {
this.servingSize builder.servingSize;
this.servings builder.servings;
this.calories builder.calories;
this.fat builder.fat;
this.sodium builder.sodium;



Creational Patterns: Sharing

- The old way: Java constructors always create a hew
object

- Singleton: only one object exists at runtime

- Interning: only one object with a particular
(abstract) value exists at runtime

- Flyweight: separate intrinsic and extrinsic state,
represents them separately, and interns the
Intrinsic state

* Not discussing this pattern in section



Singleton

- For a class where only one object of that class can
ever exist

- "Ensure a class has only one instance, and provide
a global point of access to it." -- GoF, Design
Patterns

- Two possible implementations
o Eager initialization: creates the instance when the class is

loaded to guarantee availability

o Lazy initialization: only creates the instance once it’s
needed to avoid unnecessary creation



Singleton

Eager initialization

public class Bank {
private static Bank INSTANCE = new Bank();

// private constructor
private Bank() { .. }

// factory method

public static Bank getInstance() {
) return INSTANCE;

¥

Bank b = Bank.get%n%tance();



Singleton

Lazy initialization

public class Bank
private static Bank INSTANCE;

// private constructor
private Bank() { .. }

// factory method
public static Bank getInstance() {
if (INSTANCE == null) {
INSTANCE = new Bank();

;eturn INSTANCE;
) }

Bank b = Bank.get%n%tance();



Singleton

- Would you prefer eager or lazy instantiation for an
HTTPRequest class?
o handles authentication
o definitely needed for any HTTP transaction

- Would you prefer eager or lazy instantiation for a
Comparator class?

o compares objects
o may or may not be used at runtime



Singleton

public class HttpRequest {
private static class HttpRequestHolder {
public static final HttpRequest INSTANCE =

new HttpRequest();
}

/* Singleton - Don’t instantiate */
private HttpRequest() { .. }

public static HttpRequest getInstance() {
return HttpRequestHolder.INSTANCE;

}



Singleton

public class LengthComparator implements Comparator<String> {
private int compare(String sl1l, String s2) {
return sl.length()-s2.length();
}

/* Singleton - Don’t instantiate */
private LengthComparator() { .. }
private static LengthComparator comp = null;

public static LengthComparator getInstance() {
if (comp == null) {
comp = new LengthComparator();
¥

return comp;



Interning

- Similar to Singleton, except instead of just having
one object per class, there’s one object per
abstract value of the class

- Saves memory by compacting multiple copies




Interning

public class Point {
private int x, y;

public P01nt(1nt X, int y) {
this.x = x;
this.y = y;
¥
public int getX() { return x; }
public int getY() { return y; }

@Override
public String toString() {

r\etur\n C((JJ + X + CC,JJ + y + C()JJ;
}



Interning

public class Point {
private static Map<String, Point> instances =
new WeakHashMap<String, Point>();

public static Point getInstance(int x, int y) {
String key = x + “,”, + vy;
if (!instances.containsKey(key))
instances.put(key, new Point(x,y));

return instances.get(key);

¥

private final int x, y; // immutable
private Point(int x, int y) {..}

Requires the class being interned to be immutable. Why?



Interning

* What if Points were represented in polar
coordinates?

* What further checks are necessary to make sure
these kinds of Points are interned correctly?



Interning

public class Point {
private static Map<String, Point> instances =
new WeakHashMap<String, Point>();

public static Point getInstance(double r, double theta) {
double normalizedTheta = normalize(theta);
String key = r + “,” + normalizedTheta;
if (!instances.containsKey(key))
instances.put(key, new Point(r,
normalizedTheta));
return instances.get(key);
}
private final double r, theta; // immutable
private Point(double r, double theta) {...}

Why do we need to normalize?



Exercise

* Class that represents an individual person
* Interning?
* Note mutability

* We want to create multiple MazeGames that each
use different types of room styles.

* Factory

e Construct an object representing a computer that
has lots of options (with some defaults)

e Builder



Verification!

* Nullness checker for all your previous HW

* Demo
e http://eisop.uwaterloo.ca/livetmode=edit



http://eisop.uwaterloo.ca/live#mode=edit

