
SLIDES ADAPTED FROM ALEX MARIAKAKIS,
WITH MATERIAL FROM KRYSTA YOUSOUFIAN, MIKE ERNST, KELLEN DONOHUE

Section 4:
Interfaces 

and 

Parsing Data



Classes, Objects, and Java

Everything(save primatives) is an instance of a class
◦ Defines data and operations

Every class is part of the same type hierarchy
◦ All extend one specified class or Object
◦ Inherits superclass fields

Every class also defines a type



Problems with Inheritance
Performer

Perform()

(abstract)

Dancer

Perform()
*Does a beautiful dance*

Musician

Perform()
*Sings a soulful song*

Michael 
Jackson

Perform()

What happens when we call Michael Jackson’s perform()?



Interfaces: Like Skeletons!
Pure type declaration

public interface Comparable { 
int compareTo(Object other);

} 

Can contain:
◦ Method specifications (implicitly public)
◦ Named constants (implicitly public final static)
◦ New to Java 8, default method implementations

Not normally used for implementation!

Cannot create instances of interfaces 
(similar to abstract classes)



SingerDancerDancer Singer

Michael Jackson’s Situation?
Performer

Michael 
Jackson

Perform()

Perform()
*Does a beautiful dance*Default =

Perform()
*Sings a soulful song* = Default

Dance()
*Waltzes away*Default =

Sing()
*Plays Wonderwall* = Default

Performer



Implementing Interfaces
● A class can implement one or more interfaces

class Kitten implements Pettable, Huggable

● The implementing class and its instances have the interface type(s) 
as well as the class type(s)

● The class must provide or inherit an implementation of all methods 
defined by the interface(s)

◦ Not true for abstract classes



Interface Ideas?



Using Interface Types
● An interface defines a type, so we can declare variables 

and parameters of that type
● A variable with an interface type can refer to an object of 

any class implementing that type

List<String> x = new ArrayList<String>();
void sort(List aList) {…}



Guidelines for Interfaces
● Provide interfaces for significant types and abstractions

o Think about the “is-a” relationship

● Write code using interface types like Map instead of 
HashMap and TreeMap wherever possible
◦ Allows code to work with different implementations later on
◦ Clarifies what the code makes use of

● Both interfaces and classes are appropriate in various 
circumstances



What about Abstract Classes?
Why might you want to use an Abstract Class instead of an 
Interface?



Parsing Data
● We’ll look at examples using CSV


