Section 4:

Interfaces

and

Parsing Data

SLIDES ADAPTED FROM ALEX MARIAKAKIS,
WITH MATERIAL FROM KRYSTA YOUSOUFIAN, MIKE ERNST, KELLEN DONOHUE




Classes, Objects, and Java

Everything(save primatives) is an instance of a class
> Defines data and operations

Every class is part of the same type hierarchy
> All extend one specified class or Object

° Inherits superclass fields

Every class also defines a type



Problems with Inheritance

(abstract)

*Does a beautiful d2 #Aings a soulful song*

Perform()

What happens when we call Michael Jackson’s perform()?



Interfaces: Like Skeletons!

Pure type declaration

public interface Comparable {

int compareTo (Object other);

}

Can contain:
° Method specifications (implicitly public)
© Named constants (implicitly public final static)
° New to Java 8, default method implementations

Not normally used for implementation!

Cannot create instances of interfaces
(similar to abstract classes)




Michael Jackson’s Situation?

Performer

Dance() Sing()
Default =*Waltzes away* *Plays Wonderwall* = Default
Perform() Perform()

Default =*Does a beautiful dance* *Sings a soulful song* = Default

Michael

Jackson

Perform()




Implementing Interfaces

® A class can implement one or more interfaces
class Kitten implements Pettable, Huggable

e The implementing class and its instances have the interface type(s)
as well as the class type(s)

® The class must provide or inherit an implementation of all methods
defined by the interface(s)

> Not true for abstract classes




Interface Ideas?




Using Interface Types

® An interface defines a type, so we can declare variables
and parameters of that type

® A variable with an interface type can refer to an object of
any class implementing that type

List<String> x = new ArrayList<String>();
void sort(List alList) {..}



Guidelines for Interfaces

® Provide interfaces for significant types and abstractions
O Think about the “is-a” relationship

e \Write code using interface types like Map instead of
HashMap and TreeMap wherever possible

> Allows code to work with different implementations later on

o Clarifies what the code makes use of

e Both interfaces and classes are appropriate in various
circumstances



What about Abstract Classes?

Why might you want to use an Abstract Class instead of an
Interface?




Parsing Data

® We'll look at examples using CSV




