
SECTION 3
GRAPHS & TESTING

Slides by Andrew and Anny

with material from Vinod Rathnam, Alex Mariakakis, Krysta
Yousoufian, Mike Ernst, Kellen Donohue

Agenda

■Graphs

■Testing

Graph

 = collection of nodes (vertices) and edges
A B

C D

E

Nodes: states or

objects within the graph

Edges: connection

between two nodes

my friend: I can't figure out how to store nodes in my graph

me, an intellectual: you can't figure how to store *vertices*

in your graph

Some examples

Luke

Linked Lists Binary Trees

A B C

Leia Droids

C3PO R2-D2

Directed graph vs Undirected graph

■ Directed graph

= edges have a source and destination

■ Arrows as edges

■ Parent and child nodes related by an edge

• Directed

• Undirected

What are some examples?

Directed graph vs Undirected graph

A B

C D

Directed:

• Build systems

• Course

prerequisites

Undirected:

• Facebook friends

• Map of U-District

Restaurants

Directed graph vs Undirected graph

CSE311 CSE332 John Sally

Cyclic vs Acyclic

Why do we need them?

A B C

A

B C

Special type of graphs:

Directed Acyclic Graphs (DAGs)

Worksheet

What is Testing?

■ Implementation tests

■ Specification tests

When to do which one?

Implementation vs. Specification

 Implementation tests:
 How you decide to implement the object.

 See if each component (unit) is working properly.

 Specification tests:
 Testing your API against the specifications.

 Usually larger than unit tests.

 Black box:

 Written with knowledge of only the
Specification.

 Clear box:

 Written with full knowledge of an
implementation.

Black box vs. Clear box

Worksheet

A JUnit test class (Demo)

 A method with @Test is a JUnit test.

 All @Test methods run when JUnit runs.

import org.junit.*;

import static org.junit.Assert.*;

public class TestSuite {

 @Test

 public void Test1() { … }

Using JUnit assertions

✕Verifies that a value matches expectations
✕ assertEquals(42, meaningOfLife());

✕ assertTrue(list.isEmpty());

✕ If the assert fails:

+ Test immediately terminates.

+ Other tests in the test class still run.

+ Results show information about failed tests.

Using JUnit assertions

Assertion Case for failure

assertTrue(test) the boolean test is false

assertFalse(test) the boolean test is true

assertEquals(expected, actual) the values are not equal

assertSame(expected, actual) the values are not the same (by ==)

assertNotSame(expected, actual) the values are the same (by ==)

assertNull(value) the given value is not null

assertNotNull(value) the given value is null

• And others: http://www.junit.org/apidocs/org/junit/Assert.html

• Each method can also be passed a string to display if it fails:
• assertEquals("message", expected, actual)

http://www.junit.org/apidocs/org/junit/Assert.html

Checking for exceptions (Demo)

✕ Verify that a method throws an exception when it should:
✕ Passes only if specified exception is thrown

✕ Only time it’s OK to write a test without a form of asserts

@Test(expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() {

 List<String> list = new ArrayList<String>();

 list.get(0);

}

Setup and teardown

✕ Methods to run before/after each test case method is called:

 @Before

 public void name() { ... }

 @After
 public void name() { ... }

✕ Methods to run once before/after the entire test class runs:

 @BeforeClass
 public static void name() { ... }

 @AfterClass
 public static void name() { ... }

Setup and teardown

public class Example {

 List<String> empty;

 @Before

 public void initialize() {

 empty = new ArrayList<>();

 }

 @Test

 public void size() {...}

 @Test

 public void remove() {...}

}

 1. Don’t Repeat Yourself
◦ Use constants and helper methods

 2. Be Descriptive

◦ Take advantage of message, expected, and actual values

 3. Keep Tests Small
◦ Isolate bugs one at a time; failing assertion halts test

 4. Be Thorough
◦ Test big, small, boundaries, exceptions, errors

Ground rules

Expensive checkReps()

✕ Before your final commit, remove the checking of expensive parts

of your checkRep or the checking of your checkRep entirely

✕ Example: boolean flag and structure your checkRep as so:

private void checkRep() {
 cheap-stuff
 if(DEBUG_FLAG) { // or can have this for entire checkRep
 expensive-stuff
 }
 cheap-stuff
 ...

Summary

 Demo will be uploaded

 JUnit documentation online

 Reminder: you can generate the JavaDoc API

for your code
 Located under `build/docs/javadoc` in project

folder.

 IntelliJ Gradle Instructions in the Editing/Compiling

Handout.

http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html

