
1. Fill in the representation invariant for this implementation of Circle. Assume that the
concrete representation is two points directly across from each other, representing the
endpoints of a diameter of the circle, as shown in the picture.

 public class Circle3 {

private Point corner1, corner2;

// Abstraction function:

// Rep invariant:

// __

// __

}

2. NonNullStringList is a list of Strings with no null values in the list. Give two

different concrete representations of NonNullStringList and write out the representation

invariant for both. Note that your concrete representations must have some way to implement
the three abstract operations provided (add, remove, get).
Hint: Recall the two implementations of List.

Concrete Representation 1:
public class NonNullStringList {

// Rep invariant:

// Fields:

public void add(String s) { ... }

public boolean remove(String s) { ... }

public String get(int i) { ... }

}

Concrete Representation 2:
public class NonNullStringList {

// Rep invariant:

// Fields:

public void add(String s) { ... }

public boolean remove(String s) { ... }

public String get(int i) { ... }

}

3. Comparing Specifications

Here are four possible specifications for a method isMultiple that checks whether one

integer is a multiple of another.

public boolean isMultiple (int n, int f) {…

(S1)
@returns true if there exists g such that n = f * g

(S2)
@requires f ≠ 0

@returns true if there exists g such that n = f * g, otherwise false

(S3)
@requires f > 0

@returns true if there exists g such that n = f * g, otherwise false

(S4)
@returns true if there exists g such that n = f * g and g > 0,

 otherwise false

(a) Write transition relations for S2 and S3 and compare them.

(b) Write transition relations for S1 and S4 and compare them.

(c) Write out the logical formulas for S1 and S3 and compare them.

(d) Write out the logical formulas for S2 and S4 and compare them

4. StringBag implements a bag (a set that allows duplicate elements, i.e. a multiset) of

Strings. StringBag uses an array to hold the elements and has an int size that records

the size of the bag (the number of elements being used in the array). Assume that items

will be replaced with a larger array and its elements will be copied over whenever size

exceeds the size of the array.
import java.util.*;

public class StringBag {

private int size; //# of strings in bag

private String[] items; // the strings

 // constructor
 public StringBag(String[] vals) {

size = vals.length;

items = Arrays.copyOf(vals, size); // new array copy of vals

 }

 //delete strings with length > n

 public void deleteLongStrings(int n) {
int k = 0;

while (k < size) {

if (items[k].length() > n)

{ items[k] = items[size-

1]; size = size - 1;
} else {

k = k + 1;

}
}

 }

 // add string to bag (expand bag as needed) and return success

 public boolean add(String s) {
 // not implemented

return false;
 }

}

1) Give a suitable Representation Invariant (RI) for this class. (Remember that the RI should

be sufficient to guarantee that the existing code executes successfully.)

2) The client would like to add an observer method getItems that returns an array with

the Strings that are currently in the StringBag. Below is our implementation of

getItems:

// return the current strings in this StringBag to the caller
public String[] getItems() {

return items;

}

Is this method correct? In other words, does it return the correct information to

the client?

3) Are there any potential representation exposure or other problems with this method? If

so, what can go wrong? Otherwise, briefly explain why not.

4) If there are problems with getItems, describe how to fix them and still provide an observer

method that supplies the information desired by the caller. Please briefly describe what needs to

be done to fix the problems. You do not need to write any code, but you can if it helps illustrate

your answer.

5. IntStack (code is on next page) (17 sp mid)
(a) Give a suitable abstract description of the class as would be written in the JavaDoc

comment above the IntStack class heading.

(b) Give a suitable Representation Invariant (RI) for this class. (Remember that this RI

should be sufficient to guarantee that the existing code executes successfully.)

public class IntStack {

 private int[] vals;

//stack

private int top; // top

private static int defaultCapacity = 100;

// construct new stack with default capacity

public IntStack() {
vals = new

int[defaultCapacity]; top = 0;

}

// construct new stack with given capacity

public IntStack(int capacity) {
vals = new

int[capacity]; top = 0;

}

// operations

public boolean push(int x) {

if (top == vals.length)
return false;

vals[top] = x;

top++;
return true;

}

public int pop() {

if (top == 0) { // throw runtime exception if empty

throw new NoSuchElementException();
}

top--;
return vals[top];

}

public int size() {

return top;

}
}

