
1.	Fill	in	the	representation	invariant	for	this	implementation	of	Circle.	Assume	that	the	
concrete	representation	is	two	points	directly	across	from	each	other,	representing	the	
endpoints	of	a	diameter	of	the	circle,	as	shown	in	the	picture.	

 public class Circle3 {

private Point corner1, corner2;
// Abstraction function:
// Rep invariant:
// __corner1 != null_&&_corner2 != null
// _____&& !corner1.equals(corner2)_______

}

	
		
2.	NonNullStringList	is	a	list	of	Strings with	no	null	values	in	the	list.	Give	two	
different	concrete	representations	of	NonNullStringList	and	write	out	the	representation	
invariant	for	both.	Note	that	your	concrete	representations	must	have	some	way	to	implement	
the	three	abstract	operations	provided	(add,	remove,	get).	
Hint:	Recall	the	two	implementations	of	List.	
	
Concrete	Representation	1:		
public class NonNullStringList {

// Rep invariant:
// arr != null && arr[0,count-1] != null &&
// count >= 0

// Fields:
private String[] arr;
private int count;

public void add(String s) { ... }
public boolean remove(String s) { ... }
public String get(int i) { ... }

}

Note: arr[0, count-1] is not code. It means from 0 to count-1,
including both sides. [] is kind of logical expression. [] means
including sides, () means not including sides.

For example: [0, 3] is 0, 1, 2, 3
(0, 3) is 1, 2
[0, 3) is 0, 1, 2

Concrete	Representation	2:		
public class NonNullStringList {

// Rep invariant:
// head.val != null, head.next.val != null, …
// No cycle in ListNodes

// Fields:
private`
 ListNode head;

public void add(String s) { ... }
public boolean remove(String s) { ... }
public String get(int i) { ... }

}

3. Comparing Specifications (18 sp mid)	
	
Here are four possible specifications for a method isMultiple that checks whether one

integer is a multiple of another.
	
public boolean isMultiple (int n, int f) {…

	
(S1)	
@returns true if there exists g such that n = f * g	
	
(S2)	
@requires f ≠ 0		
@returns true if there exists g such that n = f * g, otherwise false	
	
(S3)		
@requires f > 0		
@returns true if there exists g such that n = f * g, otherwise false	

(S4)		
@returns true if there exists g such that n = f * g and g > 0,		
 otherwise false	 	 	 	 	
	
(a)	Write	transition	relations	for	S2	and	S3	and	compare	them.	
S2:	in	the	domain	of	S3,	<(4,2),	true>,	<(2,1),	true>,	<(1,1),	true>,	<(1,3),	false>,	<(1,	4),	false>	
S3:	<(4,2),	true>,	<(2,1),	true>,	<(1,1),	true>,	<(1,3),	false>,	<(1,	4),	false>	
	
S2	is	part	of	S3,	so	S2	is	stronger	than	S3.	
	
	
(b)	Write	transition	relations	for	S1	and	S4	and	compare	them.	
	
S1:	<(4,2),	true>,	<(2,1),	true>,	<(4,-2),	true>,	<(1,3),	false>,	<(1,	4),	false>	
S4:	<(4,2),	true>,	<(2,1),	true>,	<(4,-2),	false>,	<(1,3),	false>,	<(1,	4),	false>	
	
S1	is	not	part	of	S4	and	S4	is	not	part	of	S1,	so	they	are	incomparable.	
	
	
		
(c)	Write	out	the	logical	formulas	for	S1	and	S3	and	compare	them.	
	
S1:	true	=>	(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	n	=	f*g)	
S3:	(f	>	0)	=>	(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	n	=	f*g,	false	otherwise)	
	
	

(f	>	0)	=>	true	
(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	n	=	f*g,	false	otherwise)	=>	(Nothing	is	
modified	AND	returns	true	iff.	∃g	s.t.	n	=	f*g).	
	
S3	has	stronger	requires	and	stronger	returns,	so	is	incomparable	to	S1	
	
	
S1’s	Logical	Formula	does	not	imply	S3’s	Logical	Formula,	nor	is	the	reverse	true,	so	S1	and	S3	
are	incomparable.	
	
(d)	Write	out	the	logical	formulas	for	S2	and	S4	and	compare	them	
	
S2:	(f	≠	0)	=>	(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	n	=	f*g,	false	otherwise)	
S4:	true	=>	(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	g	>	0	and	n	=	f*g,	false	otherwise)	
	
(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	n	=	f*g,	false	otherwise)	does	not	imply	
(Nothing	is	modified	AND	returns	true	iff.	∃g	s.t.	g	>	0	and	n	=	f*g,	false	otherwise),	nor	is	the	
reverse	true.	
	
S2’s	Logical	Formula	does	not	imply	S4’s	Logical	Formula,	nor	is	the	reverse	true,	so	S2	and	S4	
are	incomparable.	
	
	
	
	
4. StringBag implements a bag (a set that allows duplicate elements, i.e. a multiset) of
Strings. StringBag uses an array to hold the elements and has an int size that records
the size of the bag (the number of elements being used in the array). Assume that items
will be replaced with a larger array and its elements will be copied over whenever size
exceeds the size of the array.
import java.util.*;	
public class StringBag {

private int size; //# of strings in bag
private String[] items; // the strings

 // constructor		
 public StringBag(String[] vals) {	

size = vals.length;	
items = Arrays.copyOf(vals, size);	 // new array copy of vals	

 }

 //delete strings with length > n
 public void deleteLongStrings(int n) {

int k = 0;
while (k < size) {

if (items[k].length() > n)
{ items[k] = items[size-
1]; size = size - 1;

} else {
k = k + 1;	

}	
}	

 }	
	
	
 // add string to bag (expand bag as needed) and return success

 public boolean add(String s) {
 // not implemented

return false;	
 }	
}

1) Give a suitable Representation Invariant (RI) for this class. (Remember that this RI should
be sufficient to guarantee that the existing code executes successfully.)

items != null && 0 <= size <= items.length &&
for 0 <= k < size, items[k] != null
(It would also be possible to have a RI that allows items=null && size=0 if the
StringBag is empty, which is more complicated, but could be done.)
	

2) The client would like to add an observer method getItems that returns an array with
the Strings that are currently in the StringBag. Below is our implementation of
getItems:	

// return the current strings in this StringBag to the caller
public String[] getItems() {

return items;
}

Is this method correct? In other words, does it return the correct information to
the client?	
	
No. It returns the entire contents of the items array, even though some or all of the array elements
might not be defined since they are in the section of the array items[size..items.length-1], i.e., the
part of the array that is not being currently used.
	
	
	
	
	
3) Are there any potential representation exposure or other problems with this method? If
so, what can go wrong? Otherwise, briefly explain why not.

Yes. Client code could alter the contents of the StringBag by modifying elements of the
returned array, and could cause store nulls in the array, which would violate the
representation invariant.
	
	

4) If there are problems with getItems, describe how to fix them and still provide an observer
method that supplies the information desired by the caller. Please briefly describe what needs to

be done to fix the problems. You do not need to write any code, but you can if it helps illustrate
your answer.

The most reasonable solution is for getItems to allocate a new String array with length equal to
size, copy the contents of items[0..size-1] to the new array, and return that new array to the
caller. One good way to do this would be to write return Arrays.copyOf(items,size);.
(Note: this does not create a representation exposure problem, since Strings are
immutable. There is no need to make copies of the strings themselves.)

5.	IntStack	(code	is	on	next	page)	(17	sp	mid)		
(a) Give a suitable abstract description of the class as would be written in the JavaDoc
comment above the IntStack class heading.	
An IntStack is a finite stack of integers with a fixed capacity. A typical value
would be s0, s1, s2, …, sn, where s0 is at the bottom of the stack and sn is at the top.
	

(b) Give a suitable Representation Invariant (RI) for this class. (Remember that this RI
should be sufficient to guarantee that the existing code executes successfully.)	
vals is not null, top >= 0, and for 0 <= k < top, vals[k] has been initialized with stack elements.
Note: it would be incorrect to say that vals[k] is not null, since int values
cannot be null – they are not references.
	
	
	
	
	

public class IntStack {
 private int[] vals; 	

//stack

	

private int top;	 // top	
	

private static int defaultCapacity = 100;	
	

// construct new stack with default capacity
public IntStack() {

vals = new
int[defaultCapacity]; top = 0;

}

// construct new stack with given capacity
public IntStack(int capacity) {

vals = new
int[capacity]; top = 0;

}

// operations 	
public boolean push(int x) {	

if (top == vals.length)		
return false;		

vals[top] = x;	
top++;		

return true;		
}	

	
public int pop() {		

if (top == 0) { // throw runtime exception if empty
throw new NoSuchElementException();		

}	
top--;		
return vals[top];		

}	
	

public int size() {		
return top;	

}		
}

