
WITH MATERIAL FROM MANY

Sec$on	2:	
Specifica)on,	ADTs,	RI	

Agenda

	 Announcements	
◦  HW1:	due	today	at	23:59	pm	
◦  Don’t	forget	to	commit/push	your	changes	
◦  THIS	INCLUDES	TAGGING	YOUR	FINAL	VERSION	

	 Abstract	data	types	(ADT)	
	 Representa)on	invariants	(RI)	

	 HW2:	Polynomial	arithme)c	(separate	slides)	

	

Stronger vs Weaker Specifica@ons
Transi@on Rela@ons

	 Which	specifica)on	is	stronger?	

S1:	
/**		
*@spec.requires	x	>	0	
*@return	x	
**/	

A	stronger	specifica)on	has	a	smaller	transi)on	rela)on	

S2:	
/**		
*@return	x	if	x	>	0,	-x	if	x	<=	0	
**/	

Stronger vs. Weaker Specifica@ons
Transi@on Rela@ons

	 Which	specifica)on	is	stronger?	

S1:	
/**		
*@spec.requires	x	>	0	
*@return	x	
**/	

Transi)on	rela)ons	(abbrev):	
(1,	1),	(2,	2),	(3,	3)	

Transi)on	rela)ons	(abbrev):	
In	domain	of	S2:	
(1,	1),	(2,	2),	(3,	3)	

S2	has	a	smaller	transi)on	rela)ons,	so	it	is	stronger	than	S1			

S2:	
/**		
*@return	x	if	x	>	0,	-x	if	x	<=	0	
**/	

Stronger vs. Weaker Specifica@ons
Transi@on Rela@ons

	 Which	specifica)on	is	stronger?	

S1:	
/**		
*@spec.requires	x	>	0	
*@return	x	
**/	

Transi)on	rela)ons	(full):	
(1,	1),	(2,	2),	(3,	3)	
(-1,	1),	(-2,	2),	(-3,	3)	
(-1,	0),	(-2,	0),	(-3,	0)	
(-1,	null),	(-2,	null),	(-3,	null)	
Behavior	for	x<=0	is	unspecified	so	could	map	to	anything.	
	
	

Transi)on	rela)ons	(full):	
In	domain	of	S2:	
(1,	1),	(2,	2),	(3,	3)	
(-1,	1),	(-2,	2),	(-3,	3)	
	

S2	has	a	smaller	transi)on	rela)ons,	so	it	is	stronger	than	S1			

S2:	
/**		
*@return	x	if	x	>	0,	-x	if	x	<=	0	
**/	

Stronger vs. Weaker Specifica@ons
Logical Formulas

	 Which	specifica)on	is	stronger?	

S1:	
/**		
*@spec.requires	x	>	0	
*@return	x	
**/	

A	specifica)on	is	stronger	than	another	specifica)on	if	its	logical	
formula	implies	the	logical	formula	of	the	weaker	specifica)on			

S2:	
/**		
*@return	x	if	x	>	0,	-x	if	x	<=	0	
**/	

Stronger vs. Weaker Specifica@ons
Logical Formulas

	 Which	specifica)on	is	stronger?	

S1:	
/**		
*@spec.requires	x	>	0	
*@return	x	
**/	

Logical	Formula:	
x	>	0	=>	(Nothing	is	modified	AND	
returns	x)	

Logical	Formula:	
True	=>	(Nothing	is	modified	AND	returns	x	
If	x	>0	and	–x	otherwise)	

S2’s	logical	formula	implies	S1’s	logical	formula,	so	S2	is	stronger	than	S1			

S2:	
/**		
*@return	x	if	x	>	0,	-x	if	x	<=	0	
**/	

Abstract Data Types

	What	is	an	ADT?	

Abstract Data Types

	What	is	ADT?	

An	ADT	is	a	set	of	opera)ons	

Ex.	RightTriangle	

create,	getBase,	getAl)tude,	getBo`omAngle,		

	

	

How to specify an ADT

class TypeName {
 1. overview

 2. abstract fields

 3. creators

 4. observers

 5. producers	

 6. mutators
}
	

Mutable vs Immutable

	 An	immutable	object	is	an	object	that	cannot	be	altered	once	it	is	
created.	

	 Mutable	objects	can	be	altered	acer	crea)on.	

	

	 Immutable	ADTs	don’t	have	mutators	

	 Mutable	ADTs	rarely	have	producers	

ADT Example: Circle

	 Circle	on	the	Cartesian	coordinate	plane	

.	

Circle: Class Specifica@on

	  What	represents	the	abstract	state	of	a	Circle?	

	

	  How	can	we	describe	a	circle?	What	are	some	proper)es	of	a	circle	
we	can	determine?	

	

	  How	can	we	implement	this?	

	

	  What	are	some	ways	to	“break”	a	circle?	

Circle: Class Specifica@on

What	represents	the	abstract	state	of	a	Circle?	

	 Center					Radius	

What	are	some	proper)es	of	a	circle	we	can	determine?	

	 Circumference						Area	

How	can	we	implement	this?	

	 #1:	Center,	radius	

	 #2:	Center,	edge	(center,	one	point	on	outside)	

	 #3:	Corners	of	diameter	(two	points	on	two	sides	of	diameter)	

	 “Break	a	circle”:	things	may	violate	the	defini)on	of	circle	(nega)ve	radius,	etc)	

Representa@on Invariants

	 What	are	representa)on	invariants?	

	 Why	do	we	need	representa)on	invariants?	

Representa@on Invariants

	 What	are	representa)on	invariants?	

	 Maps	concrete	representa$on	of	object	➔	boolean	B	

	 Why	do	we	need	representa)on	invariants?	

	 Indicates	if	an	instance	is	well-formed	or	valid	

	 Defines	the	set	of	valid	concrete	values	
	 If	the	representa)on	invariant	is	false/violated,	the	object	is	“broken”	–	
doesn’t	map	to	any	abstract	value	

	 For	implementors/debuggers/maintainers	of	the	abstrac$on:	No	
object	should	ever	violate	the	rep	invariant	

Ways to Avoid Representa@on
Exposure

	 1.	Exploit	immutability	

	 2.	Make	a	copy	(Both	in	and	out)	

	 3.	Make	an	immutable	copy	

Circle Implementa@on 1

public	class	Circle1	{	

	private	Point	center;	

	private	double	rad;	

	

	//	Rep	invariant:	

	//	

					

	//		...	

}	

Circle Implementa@on 1

public	class	Circle1	{	

	private	Point	center;	

	private	double	rad;	

					

	//	Rep	invariant:	

	//	center	!=	null	&&	rad	>	0	

					

	//		...	

}	

Circle Implementa@on 2

public	class	Circle2	{	

	private	Point	center;	
	private	Point	edge;		

	
	//	Rep	invariant:	
	//	

									
	//				...	

}	

Circle Implementa@on 2

public	class	Circle2	{	

	private	Point	center;	
	private	Point	edge;		

	
	//	Rep	invariant:	
	//	center	!=	null	&&	

						//	edge	!=	null	&&		 				
						//	!center.equals(edge)				

	//				...	
}	

Checking Rep Invariants

•  Representa)on	invariant	should	hold	before	and	acer	

every	public	method	

	 Write	and	use	checkRep()	
◦  Call	before	and	acer	public	methods	
◦ Make	use	of	Java’s	assert	syntax!	
◦  OK	that	it	adds	extra	code	
◦  Asserts	won’t	be	included	on	release	builds	
◦  Important	for	finding	bugs	

◦  If	some	checks	are	expensive,	you	can	use	a	global	
boolean	variable	to	condi)onally	perform	them	

Takeaway for Rep Invariants

checkRep() Example with Asserts

public	class	Circle1	{	

	private	Point	center;	

	private	double	rad;	

	

	private	void	checkRep()	{	

								 	assert	center	!=	null	:	“This	does	not	have	a	
	 	 	 	 	 			center”; 		

	 	assert	radius	>	0	:	“This	circle	has	a	negative	
	 	 	 						radius”;	

	}	

}	

Circle Demo

