
CSE 331 18au Section 1 – Specifications

1. Alice must write a method histogram that takes in an array of integers sleepData

that corresponds to answers from a survey about how many hours college students

sleep, with possible answers ranging from 0 to 9. histogram then returns an array of

integers of size 10, where the value at position i is the number of times i appeared in

sleepData. For example, if sleepData = [3,4,6,7,2,1,4], then

histogram returns [0,1,1,1,2,0,1,1,0,0]. If sleepData is null, throw a

NullPointerException, and if sleepData is empty, return null. Fill out

histogram’s specification:

/**

* ___

*

* @spec.requires ___

*

* @spec.modifies ___

*

* @spec.effects __

*

* @return ___

*

* @throws ___

*/
public int[] histogram (int[] sleepData) {

2. Implement the following specification:

/** Given two integer side lengths a and b of a triangle, returns the largest possible

integer value of the third side c

* @spec.requires a > 0, b > 0

* @returns the largest possible integer value of c.

* @throws NullPointerException if a == null or b == null

**/
Public int largestSideLength (int a, int b) {

}

3. Suppose we have a BankAccount class with instance variable balance. Consider

the following three specifications for a BankAccount method withdraw, which

takes in an int amount that signifies the amount the user wants withdrawn from the

balance:

A. @spec.effects decreases balance by amount.

B. @spec.requires amount >= 0 and amount <= balance

@spec.effects decreases balance by amount.

C. @spec.effects decreases balance by amount

@throws InsufficientFundsException if balance < amount

Which specifications do each of these implementations meet? Write A, B, and/or C for

each implementation.

I. void withdraw(int amount) {

balance -= amount;

}

Specifications: ________________________________

II. void withdraw(int amount) {

if (balance >= amount) {

balance -= amount;

}

}

Specifications: _________________________________

III. void withdraw(int amount) {

if (amount < 0) {

throw new IllegalArgumentException();

}

balance -= amount;

}

Specifications: _________________________________

IV. void withdraw(int amount) throws

InsufficientFundsException {

if (balance < amount) {

throw new InsufficientFundsException();

}

balance -= amount;

}

Specifications: _________________________________

4. (Midterm 15wi Problem 4) Here is the header for a method that computes a student’s

overall score and adds that information to a gradebook data structure:
void addScore(String name, List scores, Map gradeBook);

A. Here are two possible specifications for this method:

X

@spec.requires name != null and scores != null

and gradeBook != null

@spec.modifies gradebook

@spec.effects add a mapping to gradebook

Y

@spec.requires name != null and scores != null

@spec.modifies gradebook

@spec.effects add a mapping to gradebook

@throws IllegalArgumentException if gradeBook is null

Which specification is stronger than the other? (circle) X Y neither

B. Here is one possible implementation of this method:
if (name == null || scores == null || gradeBook == null)

{

throw new IllegalArgumentException();

}

double grade = 0.0;

for (double s : scores) {

grade += s;

}

if (scores.size() > 0) {

grade /= scores.size();

}

gradeBook.put(name,grade);

Which specification(s) does this implementation satisfy? (circle) X Y both neither

5. (Midterm 17AU Problem 1) Alice is writing a function bestDeal that takes in an array

and then returns the smallest price. She intends to implement bestDeal by sorting

prices, but she does not want clients to depend on prices being sorted.

A. Write a specification for her function:

/**

*

*

*

*

*

*/
int bestDeal(int[] prices) { …

B. Suppose that Alice decides to change her implementation to no longer sort prices.

How should she change the specification above?

C. This new specification would be (circle one): weaker incomparable stronger

D. Suppose that Alice decides instead to stick with the version that sorts prices but

will now allow clients to depend on that behavior. How should she change the

specification above?

E. This new specification would be (circle one): weaker incomparable stronger

