IMPORTANT NOTE

Some parts of these section slides deal with null ints. This was a
mistake, as primitives cannot be null. These issues have been
corrected.

CSE 331 AUT1S

Section 1: Intro and Specifications

Intelli) Setup

* Homework will be posted later today

* Instructions for setup are posted

* If you try to follow them but run into problems, please come to office
hours!

Welcome to section!

* We meet once a week on Thursdays
e Different TAs teach section each week

* Section is not optional!

e Section is a supplement to lecture
* |t gives you a chance to practice the material and make sure you understand it
* Sometimes, section may contain material that is not in lectures

What is a specification?

* How you tell the client what your code does

* A “contract” between the developer and the user
* The developer promises to fulfill the specification

* The user agrees to only rely on functionality defined in the specification

Why do we need Specifications?

* Other people use your code!
* Is it a good idea to share all of your source code with everyone who uses it?

* You don’t have a perfect memory
* Can you remember the details of a program you wrote 6 months ago?

* They encourage easy and understandable code

Format of a Specification

/**
*@spec.requires
*@spec.modifies
*@spec.effects
*@return
*@throws

**/

methodName (..

Format of a Specification

/**
*@spec.requires
*@spec.modifies
*@spec.effects
*@return
*@throws

**/

methodName (..

PRECONDITION

What your method requires
to be true before it is called

If the precondition is not met,
there are no guarantees on
the method’s behavior

POSTCONDITION

Guarantees the implementor
makes about the program state
after the method is called

If the preconditions are
satisfied, the postconditions
must hold

Format of a Specification

/**
*@spec.requires
*@spec.modifies
*@spec.effects
*@return
*@throws

**/

methodName (..

PRECONDITION

What your method requires
to be true before it is called

If the precondition is not met,
there are no guarantees on
the method’s behavior

POSTCONDITION

Guarantees the implementor
makes about the program state
after the method is called

If the preconditions are
satisfied, the postconditions
must hold

Format of a Specification

/**

*@spec.requires — Spells out properties the
client must satisfy before the method is called

*@spec.modifies
*@spec.effects
*@return
*@throws

**/

methodName (..

PRECONDITION

What your method requires
to be true before it is called

If the precondition is not met,
there are no guarantees on
the method’s behavior

POSTCONDITION

Guarantees the implementor
makes about the program state
after the method is called

If the preconditions are
satisfied, the postconditions
must hold

Format of a Specification

/**

*@spec.requires — Spells out properties the
client must satisfy before the method is called

*@spec.modifies — Lists objects that may be
altered by the method

*@spec.effects — Gives guarantees on how
objects are modified by the method

*@return — Gives what the method returns

*@throws — Lists exceptions thrown by the
method

**/

methodName (..

PRECONDITION

What your method requires
to be true before it is called

If the precondition is not met,
there are no guarantees on
the method’s behavior

POSTCONDITION

Guarantees the implementor
makes about the program state
after the method is called

If the preconditions are
satisfied, the postconditions
must hold

Satisfying Specifications

* An implementation M satisfies a specification S if:

1. When all the preconditions of S are met,

2. All the postconditions of S are satisfied by M after it executes

Satisfying Specifications

/** Computes the area of a rectangle with
Public int area(int w, int 1) { *width w and length |
if (w <0 1 1 <0) | *@returns the area of a rectangle with width
throw new IllegalArgumentException(); #*w and length |
} **/
return 1 * w;

Does the implementation satisfy this specification?

Satisfying Specifications

/** Computes the area of a rectangle with
Public int area(int w, int 1) { *width w and length |
if (w <0 1 1 <0) | *@returns the area of a rectangle with width
throw new IllegalArgumentException(); #*w and length |
} **/
return 1 * w;

Does the implementation satisfy this specification?

No! — The specification is violated when w and/or | are negative

Satisfying Specifications

/** Computes the area of a rectangle with
*width w and length |

*@returns the area of a rectangle with width
*w and length |

*@throws lllegalArgumentException if w < 0
orl<0

**/

Public int area(int w, int 1) {
if (w < 0 || 1 < 0) {
throw new IllegalArgumentException ()

}

return 1 * w;

Does the implementation satisfy this specification?

Satisfying Specifications

/** Computes the area of a rectangle with
*width w and length |

*@returns the area of a rectangle with width
*w and length |

*@throws lllegalArgumentException if w < 0
orl<0

**/

Public int area(int w, int 1) {
if (w < 0 || 1 < 0) {
throw new IllegalArgumentException ()

}

return 1 * w;

Does the implementation satisfy this specification?

Yes! — The specification matches the implementation

Satisfying Specifications

/** Computes the area of a rectangle with

Public int area(int w, int 1) { *width w and length |

if (w <0 [1<0) { | *@spec.requiresw >=0and | >=0

throw new IllegalArgumentException(); *@returnsthe area of a rectangle with width
) *w and length |
return 1 * w; *% |

Does the implementation satisfy this specification?

Satisfying Specifications

/** Computes the area of a rectangle with

Public int area(int w, int 1) { *width w and length |

if (w <0 [1<0) { | *@spec.requiresw >=0and | >=0

throw new IllegalArgumentException(); *@returnsthe area of a rectangle with width
) *w and length |
return 1 * w; *% |

Does the implementation satisfy this specification?

Yes! — Even though we didn’t document the IllegalArgumentException
in the @throws tag, since we require w and | to be non-negative, we

aren’t obligated to specify what happens when the user enters a
negative wor |

Stronger vs Weaker Specifications

A specification R is stronger than another specification S if:

* Every implementation that satisfies R also satisfies S

* R has a weaker precondition and/or a stronger postcondition

Both of these definitions are equivalent!

Stronger vs Weaker Preconditions

* A precondition is weaker when it requires less from the user:
* Less requirements in the @spec.requires tag

Stronger vs Weaker Preconditions

* A precondition is weaker when it requires less from the user:
* Less requirements in the @spec.requires tag

* Which specification has a weaker precondition?

/** /**
*@spec.requires x>0 *@return xif x>0, -xif x<=0
*@return x **/

**/

Stronger vs Weaker Preconditions

* A precondition is weaker when it requires less from the user:
* Less requirements in the @spec.requires tag

* Which specification has a weaker precondition?

/**
*@spec.requires x>0
*@return x

**/

/**
*@return xif x>0, -xif x<=0

**/

Stronger vs Weaker Postconditions

* A postcondition is stronger when it makes more guarantees on the
final program state after execution

Stronger vs Weaker Postconditions

* A postcondition is stronger when it makes more guarantees on the
final program state after execution
* Less objects in the @spec.modifies tag
* @spec.effects is harder to satisfy
* @returns is harder to satisfy
* Use a subtype of an exception in@throws

Stronger vs Weaker Postconditions

* A postcondition is stronger when it makes more guarantees on the
final program state after execution
* Less objects in the @spec.modifies tag
* @spec.effects is harder to satisfy
* @returns is harder to satisfy
e @throws

* Which specification has the stronger postcondition?

/** /**
*@spec.requires x>0 *@return xif x>0, -xif x<=0
*@return x **/

**/

Stronger vs Weaker Postconditions

* A postcondition is stronger when it makes more guarantees on the
final program state after execution
* Less objects in the @spec.modifies tag
* @spec.effects is harder to satisfy
* @returns is harder to satisfy
* Throw a more specific exception (a subtype) in @throws

* Which specification has the stronger postcondition?

/** /**
*@spec.requires x>0 *@return xif x>0, -xif x<=0
*@return x **/

**/

Stronger vs Weaker Specifications

Which specification is stronger?

/** /**
*@return x *@returnxif x>0, -xif x<=0
*@throws lllegalArgumentException if x<=0 **/

**/

Stronger vs Weaker Specifications

Which specification is stronger?

/** /**

*@return x *@returnxif x>0, -xif x<=0
*@throws lllegalArgumentException if x<=0 **/

**/

Both have different behavior for x <= 0. They are both incomparable.

Worksheet

