
IMPORTANT NOTE

Some parts of these section slides deal with null ints. This was a
mistake, as primitives cannot be null. These issues have been
corrected.

CSE 331 AUT18
Section 1: Intro and Specifications

IntelliJ Setup

• Homework will be posted later today

• Instructions for setup are posted

• If you try to follow them but run into problems, please come to office
hours!

Welcome to section!

• We meet once a week on Thursdays

• Different TAs teach section each week

• Section is not optional!

• Section is a supplement to lecture
• It gives you a chance to practice the material and make sure you understand it
• Sometimes, section may contain material that is not in lectures

What is a specification?

• How you tell the client what your code does

• A “contract” between the developer and the user
• The developer promises to fulfill the specification

• The user agrees to only rely on functionality defined in the specification

Why do we need Specifications?

• Other people use your code!
• Is it a good idea to share all of your source code with everyone who uses it?

• You don’t have a perfect memory
• Can you remember the details of a program you wrote 6 months ago?

• They encourage easy and understandable code

Format of a Specification

/**
*@spec.requires
*@spec.modifies
*@spec.effects
*@return
*@throws
**/
methodName {…

Format of a Specification

/**
*@spec.requires
*@spec.modifies
*@spec.effects
*@return
*@throws
**/
methodName {…

PRECONDITION
• What your method requires

to be true before it is called
• If the precondition is not met,

there are no guarantees on
the method’s behavior

POSTCONDITION
• Guarantees the implementor

makes about the program state
after the method is called

• If the preconditions are
satisfied, the postconditions
must hold

Format of a Specification

/**
*@spec.requires
*@spec.modifies
*@spec.effects
*@return
*@throws
**/
methodName {…

PRECONDITION
• What your method requires

to be true before it is called
• If the precondition is not met,

there are no guarantees on
the method’s behavior

POSTCONDITION
• Guarantees the implementor

makes about the program state
after the method is called

• If the preconditions are
satisfied, the postconditions
must hold

Format of a Specification

/**
*@spec.requires – Spells out properties the
client must satisfy before the method is called
*@spec.modifies
*@spec.effects
*@return
*@throws
**/
methodName {…

PRECONDITION
• What your method requires

to be true before it is called
• If the precondition is not met,

there are no guarantees on
the method’s behavior

POSTCONDITION
• Guarantees the implementor

makes about the program state
after the method is called

• If the preconditions are
satisfied, the postconditions
must hold

Format of a Specification

/**
*@spec.requires – Spells out properties the
client must satisfy before the method is called
*@spec.modifies – Lists objects that may be
altered by the method
*@spec.effects – Gives guarantees on how
objects are modified by the method
*@return – Gives what the method returns
*@throws – Lists exceptions thrown by the
method
**/
methodName {…

PRECONDITION
• What your method requires

to be true before it is called
• If the precondition is not met,

there are no guarantees on
the method’s behavior

POSTCONDITION
• Guarantees the implementor

makes about the program state
after the method is called

• If the preconditions are
satisfied, the postconditions
must hold

Satisfying Specifications

• An implementation M satisfies a specification S if:

1. When all the preconditions of S are met,

2. All the postconditions of S are satisfied by M after it executes

Satisfying Specifications
/** Computes the area of a rectangle with
*width w and length l
*@returns the area of a rectangle with width
*w and length l
**/

Public int area(int w, int l) {
if (w < 0 || l < 0) {

throw new IllegalArgumentException();
}
return l * w;

Does the implementation satisfy this specification?

Satisfying Specifications
/** Computes the area of a rectangle with
*width w and length l
*@returns the area of a rectangle with width
*w and length l
**/

Public int area(int w, int l) {
if (w < 0 || l < 0) {

throw new IllegalArgumentException();
}
return l * w;

Does the implementation satisfy this specification?

No! – The specification is violated when w and/or l are negative

Satisfying Specifications
/** Computes the area of a rectangle with
*width w and length l
*@returns the area of a rectangle with width
*w and length l
*@throws IllegalArgumentException if w < 0
or l < 0
**/

Public int area(int w, int l) {
if (w < 0 || l < 0) {

throw new IllegalArgumentException();
}
return l * w;

Does the implementation satisfy this specification?

Satisfying Specifications
/** Computes the area of a rectangle with
*width w and length l
*@returns the area of a rectangle with width
*w and length l
*@throws IllegalArgumentException if w < 0
or l < 0
**/

Public int area(int w, int l) {
if (w < 0 || l < 0) {

throw new IllegalArgumentException();
}
return l * w;

Does the implementation satisfy this specification?

Yes! – The specification matches the implementation

Satisfying Specifications
/** Computes the area of a rectangle with
*width w and length l
*@spec.requires w >= 0 and l >= 0
*@returns the area of a rectangle with width
*w and length l
**/

Public int area(int w, int l) {
if (w < 0 || l < 0) {

throw new IllegalArgumentException();
}
return l * w;

Does the implementation satisfy this specification?

Satisfying Specifications
/** Computes the area of a rectangle with
*width w and length l
*@spec.requires w >= 0 and l >= 0
*@returns the area of a rectangle with width
*w and length l
**/

Public int area(int w, int l) {
if (w < 0 || l < 0) {

throw new IllegalArgumentException();
}
return l * w;

Does the implementation satisfy this specification?

Yes! – Even though we didn’t document the IllegalArgumentException
in the @throws tag, since we require w and l to be non-negative, we
aren’t obligated to specify what happens when the user enters a
negative w or l

Stronger vs Weaker Specifications

• A specification R is stronger than another specification S if:

• Every implementation that satisfies R also satisfies S

• R has a weaker precondition and/or a stronger postcondition

Both of these definitions are equivalent!

Stronger vs Weaker Preconditions

• A precondition is weaker when it requires less from the user:
• Less requirements in the @spec.requires tag

Stronger vs Weaker Preconditions

• A precondition is weaker when it requires less from the user:
• Less requirements in the @spec.requires tag

• Which specification has a weaker precondition?

/**
*@spec.requires x > 0
*@return x
**/

/**
*@return x if x > 0, -x if x <= 0
**/

Stronger vs Weaker Preconditions

• A precondition is weaker when it requires less from the user:
• Less requirements in the @spec.requires tag

• Which specification has a weaker precondition?

/**
*@spec.requires x > 0
*@return x
**/

/**
*@return x if x > 0, -x if x <= 0
**/

Stronger vs Weaker Postconditions

• A postcondition is stronger when it makes more guarantees on the
final program state after execution

Stronger vs Weaker Postconditions

• A postcondition is stronger when it makes more guarantees on the
final program state after execution

• Less objects in the @spec.modifies tag
• @spec.effects is harder to satisfy
• @returns is harder to satisfy
• Use a subtype of an exception in@throws

Stronger vs Weaker Postconditions

• A postcondition is stronger when it makes more guarantees on the
final program state after execution

• Less objects in the @spec.modifies tag
• @spec.effects is harder to satisfy
• @returns is harder to satisfy
• @throws

• Which specification has the stronger postcondition?

/**
*@spec.requires x > 0
*@return x
**/

/**
*@return x if x > 0, -x if x <= 0
**/

Stronger vs Weaker Postconditions

• A postcondition is stronger when it makes more guarantees on the
final program state after execution

• Less objects in the @spec.modifies tag
• @spec.effects is harder to satisfy
• @returns is harder to satisfy
• Throw a more specific exception (a subtype) in @throws

• Which specification has the stronger postcondition?

/**
*@spec.requires x > 0
*@return x
**/

/**
*@return x if x > 0, -x if x <= 0
**/

Stronger vs Weaker Specifications

Which specification is stronger?

/**
*@return x
*@throws IllegalArgumentException if x <= 0
**/

/**
*@return x if x > 0, -x if x <= 0
**/

Stronger vs Weaker Specifications

Which specification is stronger?

/**
*@return x
*@throws IllegalArgumentException if x <= 0
**/

/**
*@return x if x > 0, -x if x <= 0
**/

Both have different behavior for x <= 0. They are both incomparable.

Worksheet

