
Reasoning about code

CSE 331
University of Washington

Michael Ernst



Reasoning about code

Determine what facts are true during execution
x > 0

for all nodes n:  n.next.previous == n

array a is sorted
x + y == z

if  x != null, then  x.a > x.b

Applications:
Ensure code is correct (via reasoning or testing)
Find defects
Reproduce failures
Understand why code is incorrect



Verify a representation invariant

Does this code maintain the rep invariant?

class NameList {

// representation invariant: 0 ≤ index < names.length

int index;

String[] names;

... 

void addName(String name) {

index++;

if (index < names.length) {

names[index] = name;

}

}

}



What must the caller do?

Incompletely documented:

// @param name a full name, last name first, like "Doe, John"

// @returns a two-element array of the first name and last name

String[] parseName(String name) {

int commapos = name.indexOf(",");

String lastName = name.substring(0, commapos);

String firstName = name.substring(commapos + 2);

return new String[] { firstName, lastName };

}

• What input produces [“John”, “Doe”]?
• What input produces [“ohn”, “Doe”]?  [“ John”, “Doe”]?
• How can you improve the precondition?



Web server using SQL database
String userInput = …;

String query = "SELECT messages FROM users "

+ "WHERE name=‘" + userInput + "’";

statement.executeUpdate(query);  // execute DB query

Is it possible to retrieve information for all users?
query = "SELECT messages FROM users

WHERE name=‘a’ or ‘1’=‘1’"

User inputs:    a’ or ‘1’=‘1
query  = "SELECT messages FROM users

WHERE name=‘a’ or ‘1’=‘1’"
http://xkcd.com/327/



Ways to get your design right

The hard way
Start hacking
When something doesn't work, hack some more

How do you know it doesn't work?
Need to reproduce the errors your users experience

Apply caffeine liberally

The easier way
Plan first (specs, system decomposition, tests, ...)
Less apparent progress upfront
Faster completion times
Better delivered product
Less frustration



Ways to verify your code

Goal: correct code
The hard way:  hacking

Make up some inputs
If it doesn't crash, ship it
When it fails in the field, attempt to debug

An easier way:  systematic testing
Reason about possible behaviors and desired outcomes
Construct simple tests that exercise all behaviors

Another way that can be easy:  reasoning
Prove that the system does what you want

Rep invariants are preserved
Implementation satisfies specification

Proof can be formal or informal (we will be informal)
Complementary to testing



Forward reasoning

You know what is true before running the code
What is true after running the code?

Given a precondition, what is the postcondition?
Example:

// precondition:  x is even
x = x + 3;
y = 2x;
x = 5;
// postcondition:  ??

Applications:
Rep invariant holds before running the code

Does it still hold after running the code?
Does a method satisfy its spec?

If precondition holds, does postcondition hold?



Backward reasoning

You know what you want to be true after running the code
What must be true beforehand in order to ensure that?

Given a postcondition, what must the precondition be?
Example:

// precondition:  ??
x = x + 3;
y = 2x;
x = 5;
// postcondition:  y > x

What was your reasoning?
Application:

(Re-)establish rep invariant at method exit:  what requires?
Reproduce a failure:  what must the input have been?
Exploit a defect



Forward vs. backward reasoning

Forward reasoning is more intuitive

Simulates the code (“abstract interpretation”)

Introduces facts that may be irrelevant to the goal

Set of current facts may get large

Backward reasoning is sometimes more helpful

Helps you understand what should happen

Given a specific goal, indicates how to achieve it

Given an error, gives a test case that exposes it



Does the postcondition hold?

Use forward reasoning
int x = …;

int z = …;

assert x >= 0;

// x0

z = 0;

// x0  &  z = 0

if (x != 0) {

// x > 0  &  z = 0

z = x;

// x > 0  &  z = x

} else {

// x = 0  &  z = 0

z = z + 1;

// x = 0  &  z = 1

}

// (x > 0  &  z = x)   OR   (x = 0  &  z = 1)

assert z > 0;



What input led to assertion failure?

Most common application of backward reasoning

// x < 0   OR   (x = 0  &  z ≤ -1)

// (x ≠ 0  &  x ≤ 0)   OR   (x = 0  &  z ≤ -1)

if (x != 0) {

// x ≤ 0

z = x;

// z ≤ 0

} else {

// z ≤ -1

z = z + 1;

// z ≤ 0

}

// z ≤ 0

assert z > 0;



Another example of backward reasoning

// precondition: ??

(x  -3)  OR (x  3  & x < 5) OR (x  8)
(x < 5  & x*x  9)   OR   (x  5 & x+1  9)

if (x < 5) {

x*x  9
x = x*x;

x  9
} else {

x+1  9
x = x+1;

x  9
}

// postcondition:  x  9

Called the “weakest precondition” or “wp”

-4 -3 -2 -1 0 721 4 653 8 9



If statements review

Forward reasoning

{P}

if B

{P ∧ B}

S1

{Q1}

else

{P ∧ !B}

S2

{Q2}

{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q))  ∨ (¬B ∧ wp(S2, Q)) }

if B

{wp(S1, Q)}

S1

{Q}

else

{wp(S2, Q)}

S2

{Q}

{Q}



Forward reasoning with a loop

assert x >= 0;

// x0

i = x;

// x0  &  i = x

z = 0;

// x0  &  i = x  &  z = 0

while (i != 0) {

// LOOP-BEGIN

z = z + 1;

i = i – 1;

// LOOP-END

}

// x0  &  i = 0  &  z = x

assert x == z;

Infinite number of paths through this code

How do you know that the overall conclusion is correct?

Induction on the length of the computation

i ≠ 0  &  ((x ≥ 0  &  i = x &  z = 0)

OR  LOOP-END)

(x ≥ 0  &  i = x &  z = 0)

OR  LOOP-END



Reasoning about loops

A loop represents an unknown number of paths

Case analysis is problematic

Recursion presents the same problem as loops

Cannot enumerate all paths

This is what makes testing and reasoning hard

Things to prove about a loop:

1. It computes the correct value

2. It terminates (no infinite loop)



Reasoning about loops:
values and termination

// assert x  0 & y = 0
while (x != y) {

y = y + 1;

}

// assert x = y

Does “x=y” hold after this loop?
Does this loop terminate?
1) Pre-assertion guarantees that x  y
2) Every time through loop

x  y holds before at the test
If the body is entered, x > y  -- this is LOOP-BEGIN
y is incremented by 1
x is unchanged
Therefore, y is closer to x   (but x  y still holds) – this is LOOP-END

3) Since there are only a finite number of integers between x and y, y 
will eventually equal x

4) Execution exits the loop as soon as x = y  (but x  y still holds)



Understanding loops by induction

We just made an inductive argument
Inducting over the number of iterations

Computation induction
Show that conjecture holds if zero iterations
Show that it holds after n+1 iterations

(assuming that it holds after n iterations)

Two things to prove
1. Some property is preserved (known as “partial correctness”),

if the code terminates
Loop invariant is preserved by each iteration, if the iteration completes

2. The loop completes (known as “termination”)
The “decrementing function” is reduced by each iteration
and cannot be reduced forever



Example:  Factorial

{ arg≥0  &  n=arg }          // n is a temporary variable

r=1;

while (n≠0) {

r=r*n;

n=n-1;

}

{ r=arg! }

arg≥0 ∧ n=arg ∧ r=1

r=arg!/n! ∧ arg≥n>0

r=arg!/(n-1)! ∧ arg≥n>0

r=arg!/n! ∧ arg≥n≥0

“Loop invariant”.
Where did this 

come from?

(n = 0 ∧ arg≥0 ∧ n=arg ∧ r=1)   OR  (n = 0  ∧ r=arg!/n!  ∧ arg≥n≥0)

(n = 0 ∧ arg=0  ∧ r=1)   OR  (n = 0  ∧ arg≥0  ∧ r=arg!)



Loop invariant

1. When reverse engineering:  guess it
2. When designing:  choose it before writing code

To design loops or recursion:
• Decompose large problems into smaller ones

– “Divide and conquer” or “Wishful thinking” design 
methodology

• “I don’t know how to compute  n! , but I could 
compute it if you told me  (n-1)! .”
– What about 0! ?



Loop design methodology

1. Decompose problem into
– Assumption that most of the problem is solved
– A small increment of remaining work

2. Write an invariant that expresses the milestone 
of each iteration

3. Write a loop body to perform the increment 
while maintaining the invariant

4. Write the loop test so false-implies-
postcondition

5. Write initialization code to establish invariant



Loop design example

Set max to hold the largest value in array items

max = amax(items[0..len])

1. Decomposition:  Given amax(items[0..len-1]), 
can determine amax(items[0..len]) 

amax(items[0..len]) 
= max(amax(items[0..len-1]), items[len])

2. Invariant:  max holds largest value in range 
items[0..k-1]



Loop design example

Set max to hold the largest value in array items

3. Write a loop body to perform the increment and 
maintain the invariant
// inv: max holds largest value in items[0..k-1]

while (...) {

// inv holds

if (items[k] > max) {

max = items[k]; // breaks inv temporarily

} else {

// nothing to do

}

// max holds largest value in items[0..k]

k = k+1; // invariant holds again

}



Loop design example

Set max to hold the largest value in array items

4. Write the loop test so false-implies-postcondition

// inv: max holds largest value in items[0..k-1]

while (k != items.length) {

// inv holds

if (items[k] > max) {

max = items[k]; // breaks inv temporarily

} else {

// nothing to do

}

// max holds largest value in items[0..k]

k = k+1; // invariant holds again

}



Loop design example

Set max to hold the largest value in array items

5. Write initialization code to establish invariant

k = 1;

max = items[0];

// inv: max holds largest value in items[0..k-1]

while (k != items.length) {

…

}



Loop design edge case

Our initialization code has a precondition: items.size > 0

// items.length > 0
k = 1;
max = items[0];
// inv: max holds largest value in items[0..k-1]}

while (k != items.size) {
…

}

Such a (specified!) precondition may be appropriate
Else need a different postcondition (“if size is 0, …”) and a conditional 
that checks for the empty case

Or the Integer.MIN_VALUE “trick” and logical reasoning

Neat: Precise preconditions should expose all this to you!



Example:  Quotient and remainder

Compute quotient and remainder for num/denom

q := 0;

r := num;

while (denom <= r) {

r := r – denom;

q := 1 + q;

}

// num = q × denom +r  &  r < denom

num = 0 × denom + r

num = r + q × denom

num = 0 × denom + num



Example:  Greatest common divisor

{ x1 > 0  ∧ x2 > 0 }
y1:=x1;
y2:=x2;
while (y1≠y2) do

if  y1>y2
then y1 := y1-y2
else y2 := y2-y1

{ y1 = gcd(x1,x2) }

Recall:  if y1,y2 are both positive integers, then:

• If y1>y2 then gcd(y1,y2)=gcd(y1-y2,y2)

• If y2>y1 then gcd(y1,y2)=gcd(y1,y2-y1)

• If y1-y2 then gcd(y1,y2)=y1=y2



Goal:  Demonstrate that rep invariant 
is satisfied

• Exhaustive testing
– Create every possible object of the type
– Check rep invariant for each object
– Problem:  impractical

• Limited testing
– Choose representative objects of the type
– Check rep invariant for each object
– Problem:  did you choose well?

• Reasoning
– Prove that all objects of the type satisfy the rep invariant
– Sometimes easier than testing, sometimes harder
– Every good programmer uses it as appropriate



All possible objects (and values) of a type

• Make a new object
– constructors

– producers

• Modify an existing object
– mutators

– observers, producers  (why?)

• Limited number of operations, but infinitely 
many objects
– Maybe infinitely many values as well



Examples of making objects

d = a.observer()c = a.mutator()b = producer(a)

a = constructor()

g = b.observer()f = b.mutator()e = producer(b)

Infinitely many possibilities
We cannot perform a proof that considers each possibility case-by-case



Solution:  induction

Induction:  technique for proving infinitely many 
facts using finitely many proof steps

For constructors (“basis step”)
Prove the property holds on exit

For all other methods (“inductive step”)
Prove that:
if the property holds on entry, then it holds on exit

If the basis and inductive steps are true:
There is no way to make an object for which the 

property does not hold
Therefore, the property holds for all objects


