
Introduction to JavaScript
CSE 331

University of Washington

Michael Ernst

How to create a GUI for your Java application

According to Sun/Oracle:

• 1995-1998: AWT (interface to native system GUI)

• 1998-2008: Swing (pure Java GUI)

• 2008-2018: JavaFX (supports HTML5 features)

• 2018- : ¯_(ツ)_/¯

According to Java developers:

• HTML5 = HTML + JavaScript

• 57% of all Java apps use JavaScript (Java Magazine, Nov/Dec 2018)

Java and JavaScript

Oak (1994) Java (1995)
• Designed for Internet of Things (IoT)
• Success when integrated with browser
• Then used as a general-purpose programming language

Mocha (10 days in 1995) LiveScript JavaScript (1996)
• Write code directly in a web page
• No separate file, no compilation step
• Integration with HTML
• Named to piggyback on Java’s popularity

A web page = HTML + CSS + JavaScript

• HTML: Contents and structure of the web page
• Headings
• Text
• Images

• CSS: Visual appearance

• JavaScript: interactive behavior
• Dynamically modify an HTML page
• React to user input
• Validate user input
• Create cookies
• Communicate with a server (written in any language)
• JavaScript user interaction does not require any communication with the server

Learning a new programming language

• Important skill

• Learn a small subset of JavaScript

• More relevant than learning Swing

To learn a new programming language:

• Syntax

• Libraries

• Language concepts

Syntax

• Expression and statement syntax is similar to Java
• Arithmetic

• for, while, if, …

• Define and call functions

• Some syntax is nicer; see next slide

Data structures

Arrays (lists):
let students = ["Harry", "Hermione", "Ron"];

students[1]

students.length

students[9] = "Neville" creates undefined elements at indices 3..8

Dictionaries (maps):
const teams = {instinct: yellow, mystic: red, valor: blue};

teams["instinct"]

teams.instinct

teams["silliness"] = 'polkadot'

Sets
• Use a dict (how Java implements HashSet internally)

• const colors = new Set(['red', 'green', 'blue']);
Methods: add, has, delete, clear, size

Dynamic typing = run-time checks

let x = 42;

… x++ …

x = 'hello';

…

const myNumber = 22;

const myString = "hello";

myNumber + myString

No compiler or type-checker

• Easy to develop fast!

• Easy to make mistakes! (run-time crash or odd behavior)
• recommendation: "use strict";
• recommendation: use a linter like JSHint

Null vs. undefined

The Java compiler requires that all variables are initialized.

JavaScript does not.

• Undefined = the variable has not yet been assigned
• Maybe it hasn’t even been declared

• Null = the variable has been assigned to the null value

Automatic conversion to boolean

if (expr) { … } else { … }

• Treated as false if expr evaluates to:
false, 0, empty string (""), NaN, null, or undefined

• Treated as true otherwise

Objects

const greatestClass = {department:"CSE", number:331}

greatestClass.number => 331
greatestClass.professor = "Ernst";

delete greatestClass.department;

const greatestClass = {

department: "CSE",

number: 331,

toString: function() {

return this.department + this.number;

}

}

Objects only, no classes (ECMAScript 6 has classes)

• No class declarations

• Add fields and methods dynamically

• Clone a prototype object to share behavior

The browser renders the DOM, not HTML

• DOM = Document Object Model

• Initially: same as HTML

• JavaScript can change it

