
Debugging

CSE 331
University of Washington

Michael Ernst

1

Mark II logbook, Sep 9, 1947

A Bug’s Life

Defect – mistake committed by a human

Error – incorrect computation

Failure – visible error: program violates its
specification

Debugging starts when a failure is observed
– Unit testing

– Integration testing

– In the field

Goal of debugging: go from failure back to defect
3

Ways to get your code right

• Design & verification
– Prevent defects from appearing in the first place

• Defensive programming
– Programming debugging in mind: fail fast

• Testing & validation
– Uncover problems (even in spec), increase confidence

• Debugging
– Find out why a program is not functioning as intended

• Testing ≠ debugging
– test: reveals existence of problem (failure)
– debug: pinpoint location + cause of problem (defect)

4

Defense in depth

1. Make errors impossible
Java prevents type errors, memory corruption

2. Don’t introduce defects
Correctness: get things right the first time

3. Make errors immediately visible
Example: assertions; checkRep()
Reduce distance from error to failure

4. Debugging is the last resort
Work from effect (failure) to cause (defect)
Scientific method: Design experiments to gain information about
the defect
Easiest in a modular program with good specs and test suites

First defense: Impossible by design

Use the language
Java prevents type mismatch, memory overwrite errors

Use protocols/libraries/modules
TCP/IP guarantees that data is not reordered

BigInteger guarantees that there is no arithmetic
overflow

Use self-imposed conventions
– Immutable data structure guarantees behavioral equality

– try-with-resources (or finally) prevents resource leak

– Avoid recursion to prevent stack overflow

Caution: You must maintain the discipline

6

Second defense: Correctness
Get things right the first time

Think before you code. Don’t code before you think!
Don't use the compiler as crutch – does not find all defects

If it is finding defects, you are making defects it does not catch

Especially true, when debugging is going to be hard
Concurrency, real-time environment, no access to customer
environment, etc.

Simplicity is key
Modularity

Divide program into chunks that are easy to understand
Use abstract data types with well-defined interfaces
Use defensive programming; avoid rep exposure
Test early, often, and compehensively

Specification for all modules
Explicit, well-defined contract between each module and its clients

7

Strive for simplicity

Sir Anthony Hoare

Brian Kernighan
8

“There are two ways of constructing a software
design:

One way is to make it so simple that there
are obviously no deficiencies, and
the other way is to make it so complicated
that there are no obvious deficiencies.

The first method is far more difficult.”

“Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition,
not smart enough to debug it.”

Third defense: Immediate visibility

If we can't prevent errors, we can try to localize them
Assertions: catch errors early, before they contaminate
and are perhaps masked by further computation

Unit testing: when you test a module in isolation, any
failure is due to a defect in that unit (or the test driver)

Regression testing: run tests as often as possible when
changing code. If there is a failure, the code you just
changed is wrong or is triggering a latent defect

If you can localize problems to a single method or
small module, you can often find defects simply by
studying the program text

9

Benefits of immediate visibility

The key difficulty of debugging is to find the
defect: the code fragment responsible for an
observed problem

A correct method may return an erroneous result,
if there is prior corruption of representation

The earlier a problem is observed, the easier it
is to fix

Fail fast: check invariants and assertions frequently

Don't (usually) try to recover from errors – it may
just mask them

10

Don't hide errors

// precondition: k is present in a

int i = 0;

while (true) {

if (a[i] == k) {

break;

}

i++;

}

This code fragment searches an array a for a value k
The value k is guaranteed to be in the array
What if that guarantee is broken (by a defect)?

Temptation: make code more “robust” by not failing

11

Don't hide errors

// precondition: k is present in a

int i = 0;

while (i < a.length) {

if (a[i] == k) {

break;

}

i++;

}

Now the loop always terminates
But it is no longer guaranteed that a[i]==k
Code that relies on this will fail later
This makes it harder to see the link between the defect
and the failure

12

Don't hide errors

// precondition: k is present in a

int i = 0;

while (i < a.length) {

if (a[i] == k) {

break;

}

i++;

}

assert i != a.length : "key not found";

Assertions document and check invariants
Abort/debug program as soon as problem is detected

Turn an error into a failure

Failure occurs only when assertion is checked
May still be a long time after the earlier error
“Why isn’t the key in the array?”

Answer: due to some yet-undiscovered defect 13

Defect-specific checks

Defect is manifested as a failure: 1234 is in the list
Check for that specific condition

static void check(Integer[] a, List<Integer> index) {

for (int i = 0; i < a.length; i++) {

assert a[i] != 1234 : "Bad data at index " + i;

}

}

A dirty trick, but it works
You can do this as a conditional breakpoint in a

debugger

Checks in production code

Should you include assertions and checks in
production code?

Yes: stop program if check fails — don’t want to take
chance program will do something wrong

No: may need program to keep going, maybe defect
does not have such bad consequences (the failure is
acceptable)

Correct answer depends on context!

Ariane 5: overflow in unused value,
exception thrown but not handled
until top level, rocket crashes…

[full story is more complicated] 15

Regression testing

• Whenever you find and fix a defect
– Add a test for it
– Re-run all your tests

• Why is this a good idea?
– Often reintroduce old defects while fixing new ones
– Helps to populate test suite with good tests
– If a defect happened once, it could well happen again

• Run regression tests as frequently as you can
afford to
– Automate the process
– Make concise test suites, with few superfluous tests

16

Inevitable phase: debugging

Defects happen – people are imperfect
Industry average: ~10 defects per 1000 lines of code (“kloc”)

Defects happen that are not immediately localizable
Found during integration testing
Or reported by user

Cost of an error increases by an order of magnitude for
each lifecycle phase it passes through

1. Clarify symptom (simplify input), create test
2. Find and understand cause, create better test
3. Fix
4. Rerun all tests

17

The debugging process
1. Find a small, repeatable test case that produces the

failure
– Hard but worth it: clarifies the defect, gives a regression

test
– Don't proceed until you have a repeatable test

2. Narrow down location and cause
– Loop: { study the data; hypothesize; experiment; localize; }
– You may change the code to get more information
– Don't proceed until you understand the root cause

3. Fix the defect
– Is it a simple typo, or design flaw?
– Does it occur elsewhere?

4. Add test case to regression suite
– Is this failure fixed? Are any other new failures introduced?

18

Debugging and the scientific method

Debugging must be systematic

Carefully decide what to do (avoid fruitless avenues)

Record everything that you do (actions and results)
Can replicate previous work

Or avoid the need to do so

Iterative scientific process:

19

Formulate a hypothesis

Design an experiment

Perform the experiment

Interpret results

Should have explanatory power
Not just “Maybe line 3 is wrong”

Should investigate
cause

Example bug report

// returns true iff sub is a substring of full

// (i.e. iff there exists A and B such that full=A+sub+B)

boolean contains(String full, String sub);

User bug report:
It can't find the string "very happy" within:
"Fáilte, you are very welcome! Hi Seán!
I am very very happy to see you all."

Poor responses:
1. Notice accented characters, panic about not knowing

Unicode, begin unorganized web searches and
inserting poorly understood library calls, …

2. Try to trace the execution of this example

Better response: simplify/clarify the symptom

20

Reducing absolute input size

Find a simple test case by divide-and-conquer
Can't find "very happy" within

"Fáilte, you are very welcome! Hi Seán!
I am very very happy to see you all."

"I am very very happy to see you all."

"very very happy"

Can find "very happy" within
"very happy"

Can't find "ab" within "aab"

(We saw what might cause this failure earlier in the
quarter!)

21

Reducing relative input size

Find two almost-identical test inputs where one
gives the correct answer and the other does not

Can't find "very happy" within

"I am very very happy to see you all."

Can find "very happy" within

"I am very happy to see you all."

22

General strategy: simplify

In general: find simplest input that will provoke
failure

Usually not the input that revealed existence of the
defect

Start with data that revealed the defect
Keep paring it down (“binary search” can help)
Often leads directly to an understanding of the cause

When not dealing with simple method calls
The “test input” is the set of steps that reliably trigger
the failure
Same basic idea

23

Localizing a defect

Take advantage of modularity
Start with everything, take away pieces until failure
goes away
Start with nothing, add pieces back in until failure
appears

Take advantage of modular reasoning
Trace through program, viewing intermediate results

Binary search speeds up the process
Error happens somewhere between first and last
statement
Do binary search on that ordered set of statements

24

binary search on buggy code
public class MotionDetector {

private boolean first = true;

private Matrix prev = new Matrix();

public Point apply(Matrix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();

getDifference(prev,current,motion);

applyThreshold(motion,motion,10);

labelImage(motion,motion);

Hist hist = getHistogram(motion);

int top = hist.getMostFrequent();

applyThreshold(motion,motion,top,top);

Point result = getCentroid(motion);

prev.copy(current);

return result;

}

}

no problem yet

problem exists

Check
intermediate result

at half-way point

25

binary search on buggy code

Check
intermediate result

at half-way point

no problem yet

problem exists

Quickly home in
on defect in O(log n) time
by repeated subdivision

26

public class MotionDetector {

private boolean first = true;

private Matrix prev = new Matrix();

public Point apply(Matrix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();

getDifference(prev,current,motion);

applyThreshold(motion,motion,10);

labelImage(motion,motion);

Hist hist = getHistogram(motion);

int top = hist.getMostFrequent();

applyThreshold(motion,motion,top,top);

Point result = getCentroid(motion);

prev.copy(current);

return result;

}

}

Logging

Log (record) events during execution

Logging = tracing = printf debugging

An alternative to using an interactive debugger

Advantages of using a debugger:

• Can examine arbitrary values

• Can change values to experiment

• Faster turnaround (vs. edit/compile/run)

• Requires no setup

Advantages of using logging:

• Look backward in time

• Compare multiple moments

• Compare multiple executions

• Can be provided by a customer

You should be proficient at both
Don’t choose logging out of laziness

Look inside the machine

Mark Oskin was hacking on a kernel.

No GDB, no printf, no kprintf, …

But, did have beep from motherboard!

Detecting bugs in the real world

Real systems:
Large and complex (duh)
Collection of modules,
written by multiple people
Complex input
Many external interactions
Non-deterministic

Replication can be difficult
No printf or debugger
Infrequent failure
Instrumentation eliminates the failure

Errors cross abstraction barriers
Time lag from corruption (error)
to detection (failure) 29

Heisenbugs

In a deterministic program, failure is repeatable
In the real world, failure seems random

Continuous input/environment changes
Timing dependencies
Concurrency and parallelism
Nondeterminism

Random number generation
Hash tables are nondeterministic across runs

Hard to reproduce
Only happens when under heavy load
Only happens once in a while
Use of debugger or assertions  failure goes away

30

Tricks for hard bugs

Rebuild system from scratch, or restart/reboot
Find the bug in your build system or persistent data
structures

Explain the problem to a friend (or to a rubber duck)

Make sure it is a bug
Program may be working correctly and you don’t realize it!

And things we already know:
– Minimize input required to exhibit failure

– Add checks so the program fails fast

– Use logs to record events

31

Where is the defect?

The defect is not where you think it is
Ask yourself where it cannot be; explain why
Doubt yourself, and look forward to being wrong

Look for stupid mistakes first, e.g.,
Reversed order of arguments:

Collections.copy(src, dest);

Spelling of identifiers: int hashcode()

@Override catches method name typos

Same object vs. same value: a == b versus a.equals(b)
Failure to set a variable
Deep vs. shallow copy

Make sure that you have correct source code!
Obtain a fresh copy and recompile everything
Does a syntax error break the build? (It should!)

32

When the going gets tough

Reconsider assumptions
Has the OS changed? Is there room on the hard drive? Is it
a leap year? 2 full moons in a month?
Debug the code, not the comments

Ensure the comments and specs describe the code

Start documenting your system
Gives a fresh angle, and highlights area of confusion

Get help
We all develop blind spots
Explaining the problem often helps (even to a rubber duck)

Walk away
Trade latency for efficiency – sleep!
One good reason to start early

33

Key Concepts

Testing and debugging are different

Testing reveals existence of failures

Debugging pinpoints location of defects

Debugging must be a systematic process

Use the scientific method

Understand the source of defects

To find similar ones and prevent them in the future

34

