
Exceptions and assertions

CSE 331
University of Washington

Michael Ernst

Failure causes

Partial failure is inevitable

Goal: prevent complete failure

Structure your code to be reliable and understandable

Some failure causes:

1. Misuse of your code

Precondition violation

2. Errors in your code

Bugs, representation exposure, …

3. Unpredictable external problems

Out of memory

Missing file

Memory corruption

Using the above categorization, how would you categorize these?

– Failure of a subcomponent

– No return value (e.g., list element not found, division by zero)

What to do when something goes wrong

Fail early, fail friendly
Goal 1: Give information about the problem

To the programmer
To the client code and/or human user

Goal 2: Prevent harm from occurring
Abort: halt/crash the program

Prevent computation (continuing could be bad or good)
Perform cleanup actions, log the error, etc.

Re-try
Problem might be transient

Skip a subcomputation
Permit rest of program to continue

Fix the problem (usually infeasible)
External problem: no hope; just be informative
Internal problem: if you can fix, you can prevent

Avoiding blame for failures

A precondition prohibits misuse of your code
Adding a precondition weakens the spec

This ducks the problem
Does not address errors in your own code
Does not help others who are misusing your code

Removing the precondition requires specifying the
behavior
Strengthens the spec
Example: specify that an exception is thrown
“Partial spec” vs. “complete spec” (neither is better)

Defensive programming:
prevent or detect errors

Check
– precondition

– postcondition

– representation invariant

– other properties that you know to be true

Check statically via reasoning and tools

Check dynamically at run time via assertions
assert index >= 0;

assert size % 2 == 0 : "Odd size for " + toString();

Write the assertions as you write the code

Descriptive message is optional

Outline

Assertions

• Exceptions

• Designing with exceptions

When not to use assertions

Don’t clutter the code
x = y + 1;

assert x == y + 1; // useless, distracting

Don’t perform side effects

assert list.remove(x); // modifies behavior if disabled

// Better:
boolean found = list.remove(x);

assert found;

How can you test at run time
whether assertions are enabled?
Why would you want to do this?

Disabling assertions

Most assertions are better left enabled
– Prevents downstream problems
– Early indication of trouble eases debugging
– The cost is worth it during testing and debugging!

“What would we think of a sailor who wears his lifejacket when
training on dry land, but takes it off as soon as he goes to sea?”

Sir C.A.R. Hoare, Hints on Programming Language Design, 1974

The user controls whether Java assertions run
java –ea runs Java with assertions enabled
java runs Java with assertions disabled (default ☹)
A reason to use an assertion library

Turn off expensive assertions in CPU-limited production runs
– Common approach: guard expensive assertions (maybe including
checkRep()) by static variable debug

– Set debug to false in production / graded code

Square root

// requires: x  0

// returns: approximation to square root of x

public double sqrt(double x) {

...

}

Square root with assertion

// requires: x  0

// returns: approximation to square root of x

public double sqrt(double x) {

assert x >= 0;

double result;

... // compute result

assert Math.abs(result * result – x) < .0001;

return result;

}

What is the purpose of each assertion?

java.lang.Math.sqrt returns
NaN for argument < 0.

We use different specs as examples.

Compare to:
if (x < 0)

throw new IllegalArgumentException();

No difference!

Outline

• Assertions

Exceptions

• Designing with exceptions

Square root, specified for all inputs
// throws: IllegalArgumentException if x < 0

// returns: approximation to square root of x

public double sqrt(double x) throws IllegalArgumentException {

if (x < 0)

throw new IllegalArgumentException();

...

}

Throwing an exception causes immediate control transfer
Like return but different

True subtyping for throws clauses:

Subclass method throws fewer more specific exceptions

Compiler does not enforce true subtyping

Using try-catch to handle exceptions
// throws: IllegalArgumentException if x < 0

// returns: approximation to square root of x

public double sqrt(double x) throws IllegalArgumentException

A thrown exception is handled by the catch associated
with the nearest dynamically enclosing try

Client code:
try {

foo();

} catch (IllegalA…E… e) {

... take some action ...
}

void foo() {

field = sqrt(-1);

}

Client code:
try {

field = sqrt(-1);

} catch (IllegalA…E… e) {

... take some action ...
}

Top-level default handler around main(): stack trace, program terminates

Throwing and catching

• At run time, Java maintains a call stack of
methods that are currently executing
– Dynamic from method calls during execution
– Has no relation to static nesting of classes,

packages, etc.

• When an exception is thrown, control
transfers to the nearest method with a
matching (= supertype) catch block
– If none is found, top-level handler

• Print stack trace, terminate program

• Exceptions allow non-local error handling
– A method many levels up the stack can

handle a deep error

main

readCharacter

readLine

readFile

decodeCharacter

Stack grows upward

The first matching catch clause executes

try {

code…
} catch (FileNotFoundException fnfe) {

code to handle a file not found exception
} catch (IOException ioe) {

code to handle any other I/O exception
} catch (Exception e) {

code to handle any other exception
}

e.g., SocketException

e.g., ArithmeticException

The finally block

finally body is always executed

Whether an exception is thrown or not

If an exception was thrown, the exception continues being
thrown after the finally block executes

Useful for “clean-up” code, re-establishing invariants, …
FileWriter out = null;

try {

out = new FileWriter(...);

... write to out; may throw IOException
} finally {

if (out != null) {

out.close();

}

}

A try statement
can have catch
blocks and/or a
finally block

Better style:
try-with-resources

Calling a method that might
throw an exception

public double sqrt(double x) throws IllegalArgumentException;

// returns: x such that ax^2 + bx + c = 0

double solveQuad(double a, double b, double c) {

return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

The compiler rejects this code.
How can we fix it?

Declaring an exception

public double sqrt(double x) throws IllegalArgumentException;

// returns: x such that ax^2 + bx + c = 0

// throws: IllegalArgumentException if no real soln exists

double solveQuad(double a, double b, double c) throws

IllegalArgumentException {

// No need to catch exception thrown by sqrt

return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

Uninformative to clients:
solveQuad(1,0,1) “-4 is less than zero”

Why handle exceptions locally?

Failure to catch exceptions may violate modularity
Call chain: A  IntegerSet.insert  IntegerList.insert

IntegerList.insert throws an exception
Implementer of IntegerSet.insert knows how list is being used
Implementer of A may not even know that IntegerList exists

Procedure on the stack may think that it is handling
an exception raised by a different call

Better alternative: catch it and throw it again
– “chaining” or “translation”

Maybe do this even if the exception is better
handled up a level
Makes it clear to reader of code that it was not an

omission

Exception translation

public double sqrt(double x) throws IllegalArgumentException;

// returns: x such that ax^2 + bx + c = 0

// throws: Exception if no real soln exists

double solveQuad(double a, double b, double c) throws

NoRealRootException {

try {

return (-b + sqrt(b*b - 4*a*c)) / (2*a);

} catch (IllegalArgumentException e) {

throw new NoRealRootException();

}

}

Note: clients don’t know whether a set of arguments
to solveQuad is legal or illegal

Exception chaining

public double sqrt(double x) throws IllegalArgumentException;

// returns: x such that ax^2 + bx + c = 0

// throws: Exception if no real soln exists

double solveQuad(double a, double b, double c) throws

NoRealRootException {

try {

return (-b + sqrt(b*b - 4*a*c)) / (2*a);

} catch (IllegalArgumentException e) {

throw new NoRealRootException(e);

}

}

Useful mostly for debugging
Note: clients don’t know whether a set of arguments
to solveQuad is legal or illegal

Exceptions as non-local control

…

try {

for (int x : xIter) {

for (int y : yIter) {

if (procElt(x, y)) {

throw new Finished();

}

}

}

} catch (Finished f) {

// nothing to do

}

… rest of method

…

boolean finished = false;

for (int x : xIter) {

for (int y : xIter) {

if (procElt(x, y)) {

finished = true;

break; // y loop

}

}

if (finished) {

break; // x loop

}

}

… rest of method

Execute procElt on (x, y) pairs, until procElt returns true

Exceptions as non-local control

…

try {

for (int x : xIter) {

for (int y : yIter) {

if (procElt(x, y)) {

throw new Finished();

}

}

}

} catch (Finished f) {

// nothing to do

}

… rest of method

…

boolean finished = false;

xloop:

for (int x : xIter) {

for (int y : xIter) {

if (procElt(x, y)) {

break xloop;

}

}

}

… rest of method

Execute procElt on (x, y) pairs, until procElt returns true

void procMatrix() {

for (int x : xIter) {

for (int y : xIter) {

if (procElt(x, y)) {

return;

}

}

}

}

…

procMatrix();

… rest of method

Reserve exceptions for exceptional conditions

Procedural abstraction can
improve code structure.
Also gives a name to
logical chunks of code.

Outline

• Assertions

• Exceptions

Designing with exceptions

Informing the client of a problem

Special value
– null for Map.get

– -1 for indexOf

– NaN for sqrt of negative number

Problems with using a special value
No special value may be available

Error-prone: the programmer may forget to check result
Causes wrong computation and more obscure failure later

Verbose – handle at each call, up the stack
A positive: Clients can omit handling if they prove the special

value is impossible

Less efficient

A better solution: exceptions

Types of exceptional outcomes.
Is it expected? What can the client do?
Errors

Unexpected
Can be the client’s fault or the library’s

Should be rare with well-written client and library

Usually unrecoverable

Special cases
Expected – client knows it is a possibility

Unpredictable or unpreventable by client
If client knows the result, no need to make the call

Not easy to prevent/ignore with a precondition

Client can and should do something about it

Handling exceptions

Errors

Client usually can’t recover

Exception propagates to callees

Special cases

Take special action and continue computing

Client should always check for this condition

Client should handle locally

Java exceptions for errors and for special cases

Unchecked exceptions for errors

Library: no need to declare

Client: no need to catch

RuntimeException, Error,
and their subclasses

Checked exceptions for special cases

Library: must declare in signature (compiler-enforced)

Client: must either catch or declare (compiler-enforced)

Even if you can prove it will never happen at run time

There is guaranteed to be a dynamically enclosing catch

Throwable

Runtime-

Exception

ErrorException

checked

exceptions

…

…

…

unchecked exceptions

Checked vs. unchecked exceptions

Unchecked exceptions for errors
Use if (some) clients can ensure the exception will not

happen
It would be verbose & irritating if clients had to write a
catch block nonetheless

Checked exception for special cases
Static (compiler) checking ensures the caller handles it –

can’t forget
Prevents program defects
Annoying while prototyping
Can’t omit handling even if you know it cannot happen

Checked exceptions have a lot of haters

If a library may throw a checked exception,
the client must have a catch or throws clause
– Prevents program defects
– Can’t omit handling even if you know it cannot

happen
– Annoying while prototyping

My take: Good idea, poor implementation
• Weird class hierarchy
• Unintuitive name “checked”
• Some classes are in wrong category

Throwable

Runtime-

Exception

ErrorException

checked

exceptions

…

…

…

unchecked exceptions

Don’t ignore exceptions

• An empty catch block is poor style

– often done to hide an error or get code to
compile

try {

readFile(filename);

} catch (IOException e) {} // silent error

• At minimum, print the exception so you know
it happened
} catch (IOException e) {

e.printStackTrace(); // be informative

System.exit(1); // exit if appropriate

}

31

Effective Java Tip #65

Exceptions and specifications

Use an exception (complete specification) when
Used in a broad or unpredictable context

Checking the condition in the library is feasible

Use a precondition (partial specification) when
Checking in the library would be prohibitive

E.g., requiring that a list be sorted

Used in a narrow context in which calls can be
checked

Avoid preconditions in public APIs because
Caller may violate precondition

Program can fail in an uninformative or dangerous way

How do these specs
differ, for the client?

Exceptions in review

Use checked exceptions most of the time
Static checking is useful

Use unchecked exceptions if
– callers can guarantee the exception cannot occur, or
– callers can’t do anything about it

Not all exceptions are due to program defects
Example: File not found
A program structuring mechanism with non-local jumps
Used for exceptional (unpredictable) circumstances

Make implementation fail as early as possible
Handle exceptions sooner rather than later
Also see Bloch’s Effective Java, chapter 9

