
Testing

CSE 331
University of Washington

Michael Ernst

Therac-25 radiation therapy machine

Excessive radiation killed patients (1985-87)
New design removed hardware interlocks. All

safety checks are done in software.

The equipment control task did not properly
synchronize if the operator changed the setup
too quickly.

This was missed during testing, because it took
practice before operators
could work quickly enough
to trigger the problem.

Panama, 2000: ≥8 dead

Many more! (NYT 12/28/2010)

Therac-25 radiation therapy machine

Excessive radiation killed patients (1985-87)
New design removed hardware interlocks. All

safety checks are done in software.

The equipment control task did not properly
synchronize if the operator changed the setup
too quickly.

This was missed during testing, because it took
practice before operators
could work quickly enough
to trigger the problem.

Panama, 2000: ≥8 dead

Many more! (NYT 12/28/2010)

Mars Polar Lander

Legs deployed  Sensor signal falsely indicated that the
craft had touched down (130 feet above the surface)
Then the descent engines shut down prematurely

The error was traced to a single line of code
Why didn’t they blame the sensor?

Software bugs cost money

• Inadequate infrastructure for software testing costs the
U.S. $22-$60 billion per year (NIST, 2002)

• Software bugs cost global economy $312 billion per
year (Cambridge University, 2013)

• $6 billion loss from 2003 blackout in NE USA & Canada
– Software bug in alarm system in Ohio power control room

• $440 million loss by Knight Capital Group in 30 minutes
(2012)
– High-frequency trading system

• Economies and lives destroyed by austerity measures
based on study linking national debt to slow growth
(2010)

Outline:
Testing principles and strategies

• Purpose of testing

• Kinds of testing

• Heuristics for good test suites

• Black-box testing

• Clear-box testing and coverage metrics

• Regression testing

• NOT: tool details (JUnit, continuous integration)

Building Quality Software
What affects software quality?

External
Correctness Does it do what it supposed to do?

Reliability Does it do it accurately all the time?

Efficiency Does it do with minimum use of resources?

Integrity Is it secure?

Internal
Portability Can I use it under different conditions?

Maintainability Can I fix it?

Flexibility Can I change it or extend it or reuse it?

Quality Assurance (QA)
The process of uncovering problems and improving the quality of software.

Testing is a major part of QA.

Software Quality Assurance (QA)

Testing plus other activities including:
Static analysis (assessing code without executing it)

Proofs of correctness (theorems about program properties)

Code reviews (people reading each others’ code)

Software process (methodology for code development)

…and many other ways to find problems and increase
confidence

No single activity or approach can guarantee software
quality

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977 9

What can you learn from testing?

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

Edsgar Dijkstra

Notes on Structured Programming
1970

Nevertheless testing is essential. Why?

What is testing for?

Validation = reasoning + testing
– Make sure module does what it is specified to do

– Uncover problems, increase confidence

Two rules:

1. Do it early and do it often
– Catch bugs quickly, before they have a chance to hide

– Automate the process if you can

2. Be systematic
– Have a strategy, and test everything eventually

– If you thrash about randomly, the bugs will hide in
the corner until you're gone

Kinds of testing

Unit testing versus system/integration testing

Black-box testing versus clear-box testing

Specification testing versus implementation
testing

Orthogonal choices (8 varieties total)

Other kinds of testing exist

Unit testing and system testing

Unit testing: one module’s functionality
Method, class, interface, package, component

Test the unit in isolation from all others
If test fails, the defect is localized

Difficult if the unit uses other libraries

Difficult if the unit does mutations

Done early in the software lifecycle
– As soon as the implementation exists

– Whenever it changes

Don’t do integration until unit tests pass

System testing = integration testing = end-to-end testing
Run the whole system, ensure the pieces work together

Black-box tests and clear-box tests

Black-box testing
Tests depend only on the specification

Clear-box (= white-box = glass-box) testing
The implementation influences test creation

Both types of tests pass for any implementation
Black-box vs. clear-box affects choice of inputs

More details later in this lecture

Implementing a specification

A spec may be partial or may be weak.
An implementation is complete and has specific behavior.

– We saw this when comparing transition relations

Clients must only depend on what is in the spec.
The implementer knows how the implementation behaves.

Your boss asks you to implement specification S1

You actually implement specification S2 which is stronger
– S1 says “returns some value that …”, S2 says “returns smallest value

that …”
– S1 says “returns a list that …”, S2 says, “returns a sorted list that …”
– S1 says “requires x > 0”, S2 says, “requires x ≥ 0”
– S1 says “requires y != null”, S2 says, “throws Exception if y == null”
– S2 has a particular toString implementation

Your boss doesn’t even realize you did this
Your coworkers only depend on S1

Specification and implementation tests

A specification test verifies behavior guaranteed by the
specification

An implementation test verifies additional behavior of
the implementation

Ensures that your implementation behaves as designed

One person’s implementation detail is another person’s
specification

Specification vs. implementation tests affects assertions
(can also broaden inputs)

Orthogonal to black-box vs. clear-box tests
affects choice of inputs, within the spec’s domain

How is testing done?

Write the test

1) Choose input data/configuration

2) Define the expected outcome

Run the test

3) Run program/method on the input and
record the results

4) Compare observed results to the expected
outcome

sqrt example

// throws: IllegalArgumentException if x<0

// returns: approximation to square root of x

public double sqrt(double x)

What are some values or ranges of x that might be
worth probing?

x < 0 (exception thrown)

x ≥ 0 (returns normally)

around x = 0 (boundary condition)

perfect squares (sqrt(x) an integer), non-perfect squares

x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)

Specific tests: say x = -1, 0, 0.5, 1, 4

What’s so hard about testing?

“Just try it and see if it works...”
// requires: 1 ≤ x,y,z ≤ 10000

// effects: computes some f(x,y,z)

int proc(int x, int y, int z)

Exhaustive testing would require 1 trillion runs!

Sounds totally impractical – and this is a trivially small problem

Key problem: choosing test suite (partitioning of inputs)

Small enough to finish quickly

Large enough to validate the program

Approach: Partition the Input Space

Ideal test suite:
Identify sets with same behavior

Try one input from each set

Two problems

1. Notion of the same behavior is subtle
Naive approach: execution equivalence

Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
Use heuristics to approximate cheaply

Naive approach: Execution equivalence

// returns: if x < 0 ⇒ returns –x

// otherwise ⇒ returns x

int abs(int x) {

if (x < 0) return -x;

else return x;

}

All x < 0 are execution equivalent:
program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

Execution equivalence is not enough

Consider the following buggy code:
// returns: x < 0 ⇒ returns –x

// otherwise ⇒ returns x

int abs(int x) {

if (x < -2) return -x;

else return x;

}

{-3, 3} does not reveal the error!

Two execution behaviors:
x < -2 x ≥ -2

Three behaviors:
x < -2 (OK) x = -2 or -1 (bad) x ≥ 0 (OK)

Heuristic: Revealing Subdomains

A subdomain is a subset of possible inputs

A subdomain is revealing for error E if either:

– Every input in that subdomain triggers error E, or

– No input in that subdomain triggers error E

Need to test only one input from each subdomain

If subdomains cover the entire input space, then we
are guaranteed to detect the error if it is present

The trick is to guess these revealing subdomains

For buggy abs, what are revealing subdomains?

// returns: x < 0 ⇒ returns –x

// otherwise ⇒ returns x

int abs(int x) {

if (x < -2) return -x;

else return x;

}

Example sets of subdomains:

Which is best?

Example

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}
… {-6, -5, -4} {-3, -2, -1} {0, 1, 2} …

= heuristics for choosing inputs

A good heuristic gives:

 few subdomains

 For all errors E in some class of errors,
high probability that some subdomain is revealing for E

Different heuristics target different classes of errors

In practice, combine multiple heuristics

Heuristics for designing test suites

= heuristics for dividing the domain

Black Box Testing

Heuristic: Explore each case/path in the specification
Procedure is a black box: (interface visible, internals hidden)
but its spec is like an implementation you can test

Example
// effects: a > b ⇒ returns a

// a < b ⇒ returns b

// a = b ⇒ returns a

int max(int a, int b)

3 cases, so 3 tests:
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)
(3, 3) => 3 (i.e. any input in the subdomain a = b)

Black Box Testing: Advantages

• Process is not influenced by component being
tested
– Assumptions embodied in code not propagated to test

data.

– Avoids “group-think” of making the same mistake.

• Robust with respect to changes in implementation
– Test data need not be changed when code is changed

• Allows for independent testers
– Testers need not be familiar with code

– Tests can be developed before the code

More Complex Example

Write test cases based on cases in the specification
// returns: the smallest i such

// that a[i] == value

// throws: Missing if value is not in a

int find(int[] a, int value) throws Missing

Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

Have we captured all the paths?

Must hunt for multiple cases (see effects, requires)

([4, 5, 5], 5) => 1

Heuristic: Boundary Testing

Create tests at the edges of subdomains
Why do this?

off-by-one bugs
forgot to handle empty container,
null, etc
arithmetic overflow
aliasing

Small subdomains at the edges of the “main”
subdomains have a high probability of revealing
these common errors
Also, you might have misdrawn the boundaries

Boundary Testing

To define the boundary, need a metric space
A distance metric that defines adjacent inputs

One approach: operations define the metric space
Two values are adjacent if one operation apart

Point is on a boundary if either:
– There exists an adjacent point in a different

subdomain
– Some basic operation cannot be applied to the point

Example: list of integers
Basic operations: create, insert, remove, …
Adjacent values: <[2,3],[2,3,4]>, <[2,3],[2]>
Boundary value: [] (can’t apply remove)

Other Boundary Cases

Arithmetic

Smallest/largest values

Zero

Objects

Null

Circular list

Same object passed to multiple arguments (aliasing)

Boundary Cases: Arithmetic Overflow

// returns: |x|

public int abs(int x)

What are some values or ranges of x that might be worth probing?
x < 0 (flips sign) or x ≥ 0 (returns unchanged)
around x = 0 (boundary condition)
Specific tests: say x = -1, 0, 1

How about…
int x = Integer.MIN_VALUE; // x = -2147483648

System.out.println(x<0); // true

System.out.println(Math.abs(x)<0); // also true!

From Javadoc for Math.abs:
If the argument is Integer.MIN_VALUE, the most negative
representable int value, the result is that same value, which is
negative

Boundary Cases: Duplicates & Aliases
// modifies: src, dest

// effects: removes all elements of src and apends

// them in reverse order to the end of dest

<E> void appendList(List<E> src, List<E> dest) {

while (src.size()>0) {

E elt = src.remove(src.size()-1);

dest.add(elt)

}

}

What happens if src and dest refer to the same
object?

This is aliasing
It’s easy to forget!
Watch out for shared references in inputs

Heuristic: Clear-box testing

Focus: features not described by specification
– Control-flow details

– Performance optimizations

– Alternate algorithms for different cases

Common metric for test suite quality: Coverage
Goal: test suite covers (executes) all of the program

Assumption:
high coverage → good test suite → few mistakes remain in
the program

Clear-box motivation

Some subdomains are not evident from the specification (which
black-box testing uses

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {

if (x > CACHE_SIZE) {

for (int i = 2; i < x/2; i++) {

if (x%i == 0)

return false;

}

return true;

}

} else {

return primeTable[x];

}

}

Subdomain boundary (execution difference) at x = CACHE_SIZE

Clear-box testing: advantages

• Provides an important class of boundaries
– Yields useful test cases

• Gives an objective test suite quality metric
(coverage)

• Disadvantages?
Tests may have same bugs as implementation

Buggy code tricks you into complacency once you
look at it

Statement coverage is not enough

static int min (int a, int b) {

int r = a;

if (a <= b) {

r = a;

}

return r;

}

Consider any test with a ≤ b, e.g., min(1,2)
It executes every instruction

It misses the bug

Statement coverage is not enough
Branch coverage = every conditional evaluates to
true and false = every branch “goes both ways”

Branch coverage is not enough

int quadrant(int x, int y) {

int answer;

if (x >= 0)

answer = 1;

else

answer = 2;

if (y < 0)

answer = 4;

return answer;

}

Consider a suite with two test inputs: (2,-2) and (-2,2)
– Achieves 100% branch coverage

– Misses the bug.

Path coverage = execute every path through the code

2 1

3 4

Path coverage example

A program with a loop has
an infinite number of paths.

Varieties of coverage

Covering all of the program:
Statement coverage
Branch coverage
Decision coverage
Loop coverage
Condition/decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

100% may be unattainable (dead code)
High cost to approach the limit

2. Tested code is not necessarily correct
Ex: defective abs method from earlier in lecture

3. Coverage is just a heuristic
We really want the revealing subdomains

increasing

number of

test cases

required

Infeasible or impossible

Try to write unit tests

• Ideal: each test checks one component (method,…)
– And checks only one aspect/behavior of that component
– Test failure indicates the exact problem
– Debugging is a breeze

• Reality: can’t always test in complete isolation
– Example: need to use observer(s) to see if creator, mutator, or

producer yields correct results
• If test of constructor fails, defect could be in creator or observer

– Example: tested code calls other libraries (JDK)

• Advice: make each test depend on as little as possible

• Reality: your time is limited
– Testing is of value, but any activity reaches diminishing returns
– Goal: increase confidence to levels dictated by the business case

Pragmatics: Regression Testing

Whenever you find a bug
1. Record the input that revealed the bug, plus the correct

output
2. Add these to the test suite
3. Verify that the test suite fails
4. Fix the bug
5. Verify the fix

Why is this a good idea?
Ensures that your fix solves the problem

Don’t add a test that succeeded to begin with!

Helps to populate test suite with good tests
Protects against regressions that reintroduce the bug

It happened at least once, and it might happen again

Rules of Testing

First rule of testing: Do it early and do it often
Best to catch bugs soon, before they have a chance to hide.
Automate the process if you can
Regression testing will save time.

Second rule of testing: Be systematic
If you randomly thrash, bugs will hide in the corner until later
Writing tests is a good way to understand the spec

Think about revealing domains and boundary cases
If the spec is confusing  change it and/or write more tests

The spec can be buggy too
Incorrect, incomplete, ambiguous, missing corner cases

When you find a bug  write a test for it first and then fix it

Testing summary

Testing matters
You need to convince others that module works

Catch problems earlier
Bugs become obscure beyond the unit they occur in

Don't confuse volume with quality of test data
Can lose relevant cases in mass of irrelevant ones
Look for revealing subdomains

Choose test data to cover
Specification (black box testing)
Code (clear box testing)

Testing can't generally prove absence of bugs
But it can increase quality and confidence

