
Module design
and code style

CSE 331

University of Washington

Michael Ernst



Style

“Use the active voice.”

“Omit needless words.”

“Don't patch bad code - rewrite it.”

“Make sure your code ‘does nothing’ gracefully.”



Modules

• Module:  a unit of a software system
• Class, package, layer

• Designing modules is the heart of software design
• What modules

• Their specifications

• How they interact

• Implementation is irrelevant to design

• Each module enforces its abstraction barrier



Goals of (modular) design

Decomposable – can be broken down into 
modules to reduce complexity and allow 
teamwork

Composable – “Having divided to conquer, we 
must reunite to rule [M. Jackson].”

Understandable – one module can be examined, 
reasoned about, developed, etc. in isolation

Isolation – an error in one module should be as 
contained as possible

Continuity – a small change in the requirements 
should affect a small number of modules



Separation of concerns:
increase cohesion, decrease coupling

Cohesion = internal consistency

A property of a module specification
• Often also applied to an implementation

Is it self-contained, independent, and has a single, well-defined purpose?

Coupling = dependencies between components

A property of a module implementation

Is low when each subpart has good cohesion



Cohesion

Separation of concerns
• For methods: do one thing well

• Compute a value but let client decide what to do with it
• Observe or mutate, don’t do both
• Don’t print as a side effect of some other operation
• “Flag” variables are often a symptom of poor method cohesion

• For ADTs: provide a single abstraction, represent a single 
concept

Poor cohesion limits future possible uses

If your module violates this principle, redesign it
• Refactor a method into multiple simpler methods

• Break an ADT into separate ones, each of which implements 
one abstraction



Coupling

How are modules dependent on one another?
• Statically (in the code)?  Dynamically (at run-time)?  More?

• Ideally, split design into parts that don't interact much

If modules are highly coupled, you must reason about them as 
though they are a single, larger module

An application

MY
FINAL

PROJECT

A poor decomposition
(parts strongly coupled)

MY

FINAL PROJECT

A better decomposition
(parts weakly coupled)

MY

FINECT PROJAL



Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark 
path, forever will it dominate 
your destiny, consume you it will



God classes

God class: a class that hoards much of the data or 
functionality of a system

• Poor cohesion
• Little thought about why all the elements are placed together

• Reduces coupling
• By collapsing multiple modules into one

• Replaces dependences between modules with dependences 
within a bigger module

A god class is an anti-pattern: a known bad way of 
doing things



Method design

Effective Java (EJ) Tip #40: Design method signatures carefully
• Avoid long parameter lists

• Perlis: “If you have a procedure with ten parameters, you probably 
missed some.”

• Beware of multiple parameters of the same type
Which of these is correct?
memset(ptr, size, 0);

memset(ptr, 0, size);

• Avoid methods that take lots of Boolean “flag” parameters

EJ Tip #41: Use overloading judiciously

• Useful:  don’t have arbitrarily-different method names

• Use only if the specification is analogous



Field design

A field:
• Is part of the internal state of the object
• Has a value that retains meaning throughout the 

object's life
• Its state must persist between public method 

invocations

Other variables should be local to a method
• Do not use fields to avoid parameter passing
• Not every constructor parameter needs to be a field

Exception: Certain cases where overriding is needed
• Example: Thread.run



Constructor design

• A constructor should fully initialize the object
• The rep invariant should hold

• Shouldn't need to call other methods to “finish” 
initialization

• Constructor should not take any more parameters 
than necessary to initialize the object's state



Naming

EJ Tip #56: Adhere to generally accepted naming conventions

• Class names: generally nouns 
• Beware "verb + er" names, e.g. Manager, Scheduler, 
ShapeDisplayer

• Interface names often –able/-ible adjectives:

Iterable, Comparable, …

• Method names: noun or verb phrases 
• Nouns for observers: size, totalSales
• Verbs+noun for observers: getX, isX, hasX
• Verbs for mutators: move, append
• Verbs+noun for mutators: setX
• Choose affirmative, positive names over negative ones

isSafe not isUnsafe
isEmpty not hasNoElements



Names should be informative

count, flag, status, compute, check, 
value, pointer, names starting with my…

• Convey no useful information

Instead, describe what is being counted, what the “flag” 
indicates, etc.

numberOfStudents, isCourseFull, calculatePayroll, 
validateWebForm, …

Use short names in local context:
for (i = 0; i < size; i++) items[i]=0;

Not:   for (theLoopCounter =  0; 
theLoopCounter < theCollectionSize;
theLoopCounter++) 

theCollectionItems[theLoopCounter]=0;



Class design ideals

Cohesion:  already discussed

Coupling:  already discussed

Completeness: Every class should present a complete 
interface

Consistency: In names, param/returns, ordering, and 
behavior



Completeness

• Include important methods to make a class easy to use 
or to enable efficient operations
Counterexamples: 
• A mutable collection with add but no remove
• A tool object with a setHighlighted method to select it, but no 

setUnhighlighted method to deselect it
• Date class with no date-arithmetic operations

• Objects that have a natural ordering should implement 
Comparable

• Usually implement equals (and therefore hashCode)

• Always override Object.toString (a superclass might 
have done this for you)



Don’t include the kitchen sink

If you include it, you’re stuck with it forever
Even if almost nobody ever uses it

Don’t include compound operations
A client can call two operations instead

A balancing act that depends on taste
Err on the side of omitting an operation

You can always add it later if you really need it

“Everything should be made as simple 
as possible, but not simpler.”

- Einstein



Consistency

A module should have consistent names, parameters in 
the same order, and behavior

Violations of this principle:
• setFirst(int index, String value)
setLast(String value, int index) 

• Date and GregorianCalendar use 0-based months

• String methods:
equalsIgnoreCase

compareToIgnoreCase

regionMatches(boolean ignoreCase)

• Collection size:
String.length()

array.length

collection.size() 



Open-closed principle

Software entities should be open for extension, but 
closed for modification

• Add features by adding new classes or reusing existing 
ones in new ways

• Avoid modifying existing ones
• Changing existing code can introduce bugs and errors

Related: code to interfaces, not to classes
Example: accept a List parameter, not ArrayList or 
LinkedList
EJ Tip #52: Refer to objects by their interfaces

Really:  “Use the most general (highest) type that provides the 
needed operations”



Documenting a class

Specification (external documentation)
/** ... */ Javadoc for classes, interfaces, methods
What clients need to know
Includes abstract invariants, pre-/post-conditons

Implementation (internal documentation)
// comments
Clients don’t need this information and shouldn’t know it
Useful for a fellow developer maintaining this class
Rep invariant, abstraction function, internal pre-/post-
conditions, algorithm explanation, rationale for design and 
implementation choices
“Self-documenting code” is rare
If it’s hard to document, redesign it

Keep the two types of documentation separate



Enums improve readability

Consider use of enums, even an enum with only two 
values

Which of these is more readable?

oven.setTemp(97, true); 

oven.setTemp(97, Temperature.CELSIUS);

(See EJ #40 [51])



Choose appropriate types

EJ Tip #48: Avoid float and double if exact answers 
are required

Classic example: Money  (round-off is bad here)

Avoid String representations
If the implementation parses the rep, redesign

String.indexOf, regular expressions

String is tempting because it’s a common input format



Independence of views

• Confine user interaction to a core set of “view” classes
• Isolate these from the “model” classes that represent data

• Do not put print statements in your model classes
• This locks your code into a text representation

• Makes it less useful if the client wants a GUI, a web app, etc.

• Instead, model classes return data for use by view 
classes

Which of the following is better?
public void printMyself()

public String toString()



Design and code for the reader

• Specs and code are read more often than written
• By clients:  need to know how to use it

• By maintainers, including future you
• How it works

• Why it was designed this way (more important!)

• Learn style and design advice, and reread it 
regularly

• Practice!  Mastery requires time and experience
• Get feedback

• Learn throughout your career


