
Equality

Michael Ernst

CSE 331

University of Washington

Object equality

• A simple idea

– Two objects are equal if they have “the same value”

• A subtle idea – intuition can be misleading

– Same object/reference, or same contents/value?

– Same concrete value, or same abstract value?

– Same right now or same forever?

– Interaction with inheritance (subclasses)

– When are two collections equal?

• Relationship to equality of elements? Order of elements?

• What if a collection contains itself?

– How to implement equality correctly and efficiently

Properties of equality

Reflexive
a.equals(a) == true

Symmetric
a.equals(b) b.equals(a)

Transitive
a.equals(b) b.equals(c) a.equals(c)

A relation that is reflexive, transitive, and symmetric is an
equivalence relation

Reference equality

LocalDate d1 = LocalDate.now();

LocalDate d2 = LocalDate.now();

// T/F: d1 == d2 ?

// T/F: d1.equals(d2) ?

LocalDate d3 = d1;

// T/F: d1 == d3 ?

// T/F: d1.equals(d3) ?

LocalDate d4 = LocalDate.of(1776, 7, 4);

// T/F: d1 == d4 ?

// T/F: d1.equals(d4) ?

year

month

day

2018

10

8

2018

10

8

year

month

day

d1

d2

d3

d4

1776

7

4

year

month

day

Is this
possible?

Is this possible?
(LocalDate is

immutable.)

LocalDate

LocalDate

LocalDate

• An object is equal only to itself

– True if a and b refer to (point to) the same object

– In Java: a == b

Clients should
not depend on
== or !=

• An object is equal only to itself

– True if a and b refer to (point to) the same object

– In Java: a == b

Reference equality

• Reference equality is an equivalence relation
– Reflexive
– Symmetric
– Transitive

• Reference equality is the strongest definition of
equality
– It is the smallest equivalence relation on objects

• Why can’t an equivalence relation be smaller than it?

– Weaker definitions can be useful

Object.equals method

The Object.equals implementation is very
simple:

public class Object {

public boolean equals(Object o) {

return this == o; // reference equality

}

}

Yet its specification is much more elaborate. Why?

Equals specification
public boolean equals(Object obj)
Indicates whether some other object is “equal to” this one. The equals

method implements an equivalence relation:
– It is reflexive: for any reference value x, x.equals(x) should

return true.
– It is symmetric: for any reference values x and y, x.equals(y)

should return true if and only if y.equals(x) returns true.
– It is transitive: for any reference values x, y, and z, if

x.equals(y) returns true and y.equals(z) returns true, then
x.equals(z) should return true.

– It is consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false, provided no information used in
equals comparisons on the object is modified.

– For any non-null reference value x, x.equals(null) should
return false.

The equals method for class Object implements the most discriminating
possible equivalence relation on objects; that is, for any reference
values x and y, this method returns true if and only if x and y refer to
the same object (x==y has the value true). …

Weak specification:
“The equals method implements an equivalence relation,
and null does not equal anything else.”

The default implementation (reference equality) satisfies
this specification.

http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html

Method specs and subtypes

• Subclasses can extend Object and override equals
• Subclasses must satisfy the spec of equals

– Every Java class is a subclass of Object

• The spec of equals must be appropriate for every Java class
– Subclasses may specify a stronger contract
– Subclasses may not specify a weaker contract

• If Object.equals specified reference equality,
every Java class would have to use reference equality

• When you write a spec, think about all possible subtypes
– Write a weak, flexible spec to accommodate their needs
– Balance needs of clients with needs of subtype implementors
– Don’t enshrine implementation details in the spec

A class that needs less-strict equality

Here is a class that inherits Object.equals:
public class Duration {

private final int min;

private final int sec;

public Duration(int min, int sec) {

this.min = min;

this.sec = sec;

}

}

Duration d1 = new Duration(10, 5);

Duration d2 = new Duration(10, 5);

System.out.println(d1.equals(d2)); // False

// We would like this to be true, so let’s override equals

An incorrect equals method

Let's create an equals method that compares fields:
public boolean equals(Duration d) {

if (d == null)

return false;

return d.min == min && d.sec == sec;

}

This is an equivalence relation (reflexive, symmetric, and
transitive) for Duration objects
Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True!

What is an example of code for which this fails?
Object o1 = new Duration(10,5);

Object o2 = new Duration(10,5);

System.out.println(o1.equals(o2)); // False! (oops)

Overloads,
does not override,

Object.equals(Objejct)

Review:
Which implementation gets run?

1. Resolve overloading at compile time
– Let R be the compile-time type of the receiver
– Choose the most specific, applicable, accessible operation

in R
• Accessible operations: Visible (public, private, protected)
• Applicable operations: Those whose parameter types are

supertypes of the argument types
• Most specific: its parameter types are subtypes of the

corresponding parameter types for other applicable ops
– If no most specific exists, compile-time error

This picks a method family or signature

2. Resolve overriding at run time (dynamic dispatch)
– Run the implementation in the run-time type of the

receiver
• Might be inherited from a superclass

Overloading resolution

Implementation without overriding:

class Object {

boolean equals(Object o) {

return this == o;

}

}

class Duration extends Object {

boolean equals(Duration d) {

if (d == null)

return false;

return d.min == min

&& d.sec == sec;
}

}

Duration d1

= new Duration(10,5);

Duration d2

= new Duration(10,5);

Object o1 = d1;

Object o2 = d2;

d1.equals(d1);

d1.equals(d2);

d1.equals(o1);

d1.equals(o2);

o1.equals(d1);

o1.equals(d2);

o1.equals(o1);

o1.equals(o2);

true

true

true

false

true

false

true

false

Duration.equals

Object.equals

instanceof

evaluates to false
if value is null

A correct equals method for Duration

@Override

public boolean equals(Object o) {

if (! (o instanceof Duration))

return false;

Duration d = (Duration) o;

return d.min == min && d.sec == sec;

}

Reflexive, symmetric, and transitive for all values

Compiler warns if the signature
does not match (i.e., if this
overloads and creates a new
method family)

Rare use of cast
that is idiomatic

Equality and inheritance

Count how many objects have ever been created:
public class CountedDuration extends Duration {

public static numCountedDurations = 0;

public CountedDuration(int min, int sec) {

super(min, sec);

numCountedDurations++;

}

}

Does not override equals; inherits from Duration
Any combination of Duration and CountedDuration objects
can be compared

– Equal if same values in min and sec fields
– Works because o instanceof Duration is true

when o is an instance of CountedDuration
numCountedDurations is not part of the abstract state

Equality and inheritance

Let’s add a nano-second field for fractional seconds:

public class NanoDuration extends Duration {

private final int nano;

public NanoDuration(int min, int sec, int nano) {

super(min, sec);

this.nano = nano;

}

}

We need to override equals. Why?

If we inherit equals() from Duration, nano will be

ignored, and objects with different nanos will be equal.

Symmetry bug

A first attempt at an equals method for NanoDuration
(using the rules we have learned so far):
public boolean equals(Object o) {

if (! (o instanceof NanoDuration))

return false;

NanoDuration n = (NanoDuration) o;

return super.equals(n) && nano == n.nano;

}

This is not symmetric!

Duration nd = new NanoDuration(5, 10, 15);

Duration d = new Duration(5, 10);

System.out.println(nd.equals(d)); // false

System.out.println(d.equals(nd)); // true

Two ways to fix the
symmetry bug:
1. Change to true

2. Change to false

Proposed symmetry fix #1:
nd.equals(d) true (ignore nano)

class NanoDuration extends Duration {

public boolean equals(Object o) {

if (! (o instanceof Duration))

return false;

// if o is a normal Duration, compare without nano

if (! (o instanceof NanoDuration))

return super.equals(o);

NanoDuration n = (NanoDuration) o;

return super.equals(n) && nano == n.nano;

}

… }

This is not transitive!

Transitivity bug

Duration nd1 = new NanoDuration(5, 10, 15);

Duration d = new Duration(5, 10);

Duration nd3 = new NanoDuration(5, 10, 30);

System.out.println(nd1.equals(d2)); // true

System.out.println(d2.equals(nd3)); // true

System.out.println(nd1.equals(nd3)); // false!

min

sec

nano

5

10

15

5

10

min

sec

5

10

30

min

sec

nano

NanoDuration Duration NanoDuration

Transitivity bug

• The bug is in the specification: “A Duration equals a
NanoDuration if their min and sec fields correspond,
ignoring the nano field” (not an equivalence relation)
– We coded without a specification
– This is a design problem, and needs a design solution
– Lesson: write and review your spec before coding

• Must use symmetry fix #2: d.equals(nd) false
Solution: no Duration equals any NanoDuration
(But, Duration.equals cannot special-case
NanoDuration)
1. Change Duration.equals so it does not consider any subclass to

be equal
2. Change NanoDuration so it is not a subclass of Duration

Checking exact class, instead of instanceof

Duration can avoid comparing against an instance of a subtype:
@Override

public boolean equals(Object o) {

if (o == null)

return false;

if (! o.getClass().equals(getClass()))

return false;

Duration d = (Duration) o;

return d.min == min && d.sec == sec;

}

Problems:
• Every subtype must override equals

Even if it wants the identical definition

• Take care when comparing subtypes to one another
Duration objects never equal CountedDuration objects
Consider an ArithmeticDuration class that adds operators but

no new fields

Previously:

if (! (o instanceof Duration))

return false;

Another solution: avoid subtyping

Use composition instead:

public class NanoDuration {

private final Duration duration;

private final int nano;

// ...

}

NanoDurations and Durations are now unrelated
Unrelated objects are never equal
Solves some but not all problems, and introduces others

Can’t use a NanoDuration where a Duration is expected (not a Java
subtype)

Tedious, error-prone implementation with lots of forwarding
methods

A base class reduces code duplication

• Can avoid some method redefinition by having Duration and
NanoDuration both extend a common abstract class

– Or implement the same interface

– Leave overriding equals to the two subclasses

• Still no subtyping or substitution of NanoDuration for Duration

• Requires advance planning, or willingness to change Duration when
you discover the need for NanoDuration

Date and Timestamp in Java

public class Timestamp extends Date

“A thin wrapper around java.util.Date that ... adds
the ability to hold the SQL TIMESTAMP nanos value
and provides formatting and parsing operations ...”

Caveat 1
“The Timestamp.equals(Object) method is not

symmetric with respect to the
java.util.Date.equals(Object) method.”

Caveat 2
“Also, the hashcode method uses the underlying

java.util.Date implementation and therefore does
not include nanos in its computation.”

Date and Timestamp in Java

Caveat 3
“Due to the differences between the Timestamp class

and the java.util.Date class mentioned above, it is
recommended that code not view Timestamp
values generically as an instance of java.util.Date.
The inheritance relationship between Timestamp
and java.util.Date really denotes implementation
inheritance, and not type inheritance.”

Translation:
“Timestamps are not Dates. Ignore that extends
Date bit in the class declaration.”

public boolean equals(Timestamp ts)

“Tests to see if this Timestamp object is equal to the

given Timestamp object.”

public boolean equals(Object ts)

“Tests to see if this Timestamp object is equal to the

given object. This version of the method equals has

been added to fix the incorrect signature of

Timestamp.equals(Timestamp) and to preserve

backward compatibility with existing class files. Note:

This method is not symmetric with respect to the

equals(Object) method in the base class.”

Timestamp: overloading error

A special case: uninstantiable types

• No equality problem if superclass cannot be
instantiated!
– For example, suppose Duration were abstract

– Then no troublesome comparisons can arise
between Duration and NanoDuration instances

• This may be why this problem is not very
intuitive
– In real life, “superclasses” can't be instantiated

– We have specific apples and oranges, never
unspecialized Fruit

Efficiency of equality

Equality tests can be slow
E.g., compare two text documents or video files

It can be useful to quickly prefilter
Example: are the files same length?
If not, they are not equal
If so, then they might be equal

They need to be compared

A hash code is an efficient prefilter for equality
Do objects have same hash code?
If not, they are not equal
If so, then they might be equal

They need to be compared

if (file1.length() != file2.length()) {
return false;

} else {
... // do full equality check

}

Aside: another use for hashCode

• Compute an index for an object in a hash table

• This is a special case of prefiltering for
equality!

– If you know how hash tables are implemented,
think about this until you understand why.

– If you don’t know about hash tables, ignore this.

Specification for Object.hashCode

public int hashCode()

“Returns a hash code value for the object. This
method is supported for the benefit of hashtables
such as those provided by java.util.HashMap.”

The general contract of hashCode is:

– Self-consistent:
o.hashCode() == o.hashCode()

...so long as o doesn’t change between the calls

– Consistent with equality:
a.equals(b) a.hashCode()==b.hashCode()

Many possible hashCode implementations

public class Duration {

public int hashCode() {

return 1; // always safe, but no prefiltering

}

}

public class Duration {

public int hashCode() {

return min; // safe, but poor prefiltering for

} // Durations that differ in sec field only

}

public class Duration {

public int hashCode() {

return min + sec; // safe, and changes in any field

} // will tend to change the hash code

}

Consistency of equals and hashCode

Suppose we change the spec for Duration.equals:
// Returns true if o and this represent the same number of seconds

public boolean equals(Object o) {

if (! (o instanceof Duration))

return false;

Duration d = (Duration) o;

return min*60 + sec == d.min*60 + d.sec; // same # of sec.

}

We must update hashCode, or we will get
inconsistent behavior. (Why?) This works:
public int hashCode() {

return min*60 + sec;

}

Don’t use arithmetic to compute hashes!
Typical implementation of hashCode
(few exceptions):
Objects.hash(field1, field2, field3);

Equality, mutation, and time

• If two objects are equal now, will they always be
equal?
– In mathematics, the answer is “yes”

– In Java, the answer is “you choose”

– The Object contract doesn't specify this (why not?)

• For immutable objects
– Abstract value never changes

– Equality is automatically forever (even if rep changes)

• For mutable objects, equality can either:
– Compare abstract values (field-by-field comparison),

– Or be eternal (reference equality).

– Can't do both! (Since abstract value can change.)

Examples

StringBuffer is mutable and takes the “eternal” approach:
StringBuffer s1 = new StringBuffer("hello");

StringBuffer s2 = new StringBuffer("hello");

System.out.println(s1.equals(s1)); // true

System.out.println(s1.equals(s2)); // false

This is reference (==) equality, which is the only way to
guarantee eternal equality for mutable objects.

Date is mutable and takes the “abstract value” approach:

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT

Date d2 = new Date(0);

System.out.println(d1.equals(d2)); // true

d2.setTime(1); // a millisecond later

System.out.println(d1.equals(d2)); // false

Behavioral and observational equivalence

Two objects are “behaviorally equivalent” if there is
no sequence of operations (excluding ==) that can
distinguish them
This is “eternal” equality
Two Strings with the same content are behaviorally

equivalent; two Dates or StringBuffers with the same
content are not

Two objects are “observationally equivalent” if
there is no sequence of observer operations that
can distinguish them

Excluding mutators
Excluding == (permitting == would require reference equality)

Two Strings, Dates, or StringBuffers with same
content are observationally equivalent

Equality and mutation

Date class implements observational equality

Can therefore violate rep invariant of a Set
container by mutating after insertion
Set<Date> s = new HashSet<Date>();

Date d1 = new Date(0);

Date d2 = new Date(1000);

s.add(d1);

s.add(d2);

d2.setTime(0);

for (Date d : s) { // prints two of the same Date

System.out.println(d);

}

Pitfalls of observational equivalence

Equality for set elements would ideally be behavioral
Java makes no such guarantee (or requirement)
So we have to make do with caveats in specs:

“Note: Great care must be exercised if mutable objects are
used as set elements. The behavior of a set is not
specified if the value of an object is changed in a
manner that affects equals comparisons [or hash codes]
while the object is an element in the set.”

Same problem applies to keys in maps
Libraries choose not to copy-in for performance and

to preserve object identity

Mutation and hash codes

Sets assume hash codes don't change

Mutation and observational equivalence can break this
assumption too:

List<String> friends =

new LinkedList<String>(Arrays.asList("zaphod", "yoda"));

List<String> enemies = ...; // any other list, say with “xenu”

Set<List<String>> h = new HashSet<>();

h.add(friends);

h.add(enemies);

friends.add("weatherwax");

System.out.println(h.contains(friends)); // probably false

for (List<String> lst : h) {

System.out.println(lst.equals(friends));

} // one “true” will be printed – inconsistent with “false” for contains()

More container wrinkles: self-containment

The equals and hashCode methods on containers
are recursive:

class ArrayList<E> {

public int hashCode() {

int code = 1;

for (Object o : list)

code = 31*code + (o==null ? 0 : o.hashCode());

return code;

}

This client code causes an infinite loop in hashCode:
List<Object> lst = new LinkedList<Object>();

lst.add(lst);

int code = lst.hashCode();

Summary:
All equals are not equal!

– reference equality

– behavioral equality

– observational equality

stronger

weaker

Summary: Java specifics

• Mixes different types of equality

– Objects are treated differently than collections

• Extendable specifications

– Subtypes can be less strict

• Only enforced by the specification

• Speed hack
– hashCode

Summary: object-oriented Issues

• Inheritance
– Subtypes inheriting equals can break the spec

• Many subtle issues

– Forcing all subtypes to implement is cumbersome

• Mutable objects
– Much more difficult to deal with

– Observational equality

– Can break reference equality in collections

• Abstract classes
– If only the subclass is instantiated, we are OK…

Summary: software engineering

• Equality is such a simple concept

• But…
– Programs are used in unintended ways

– Programs are extended in unintended ways

• Many unintended consequences

• In equality, these are addressed using a
combination of:
– Flexibility

– Carefully written specifications

– Manual enforcement of the specifications
• perhaps by reasoning and/or testing

