Overloading

CSE 331
University of Washington

Michael Ernst



Overloading vs. overriding

* Overloading: Multiple operations in a class with
the same name and different parameters (number
or type)

— To Java, the operations are unrelated to one another
— Convenient to avoid making up different method names

— Style rule: The specifications should be analogous
e Otherwise the program is confusing

* Overriding: Same name and parameters as an
implementation in a supertype

— Specification in subtype must be equal or stronger
* CSE 143 covers overriding, but not overloading



Method families and implementations

An operation is part of an

) . ! class A { class E {
ADT's specification £(int) (..} £ (int) {..}
A method implementation £(int, bool){..} }
appears in Java source g(int) {..}
code }

A method family is all the
implementations with the class B extends A {
same signature (name and £ (int) {..} Contains the operations
parameter types) in an h(int) {..} £(int, bool) and g (int)
inheritance tree }

class C extends B { class D extends B {
“Method” can £(int) {..} h(int) {..}
mean any of £(int, bool) {..} h(int, bool) {..}
these. Be specific h(int) {..} i(int) {..}
when ambiguity h(int, bool){..} }
is possible. }

All methods are public void



Which implementation gets run?

1. Resolve overloading at compile time
— Let R be the compile-time type of the receiver

— Choose the most specific, applicable, accessible operation
in R
 Accessible operations: Visible (public, private, protected)

 Applicable operations: Those whose parameter types are
supertypes of the argument types

 Most specific: its parameter types are subtypes of the
corresponding parameter types for other applicable ops

— If no most specific exists, compile-time error
This picks a method family or signature

2. Resolve overriding at run time (dynamic dispatch)

— Run the implementation in the run-time type of the
receiver
* Might be inherited from a superclass



