
Overloading

CSE 331
University of Washington

Michael Ernst

Overloading vs. overriding

• Overloading: Multiple operations in a class with
the same name and different parameters (number
or type)
– To Java, the operations are unrelated to one another
– Convenient to avoid making up different method names
– Style rule: The specifications should be analogous

• Otherwise the program is confusing

• Overriding: Same name and parameters as an
implementation in a supertype
– Specification in subtype must be equal or stronger

• CSE 143 covers overriding, but not overloading

Method families and implementations

An operation is part of an
ADT’s specification
A method implementation
appears in Java source
code
A method family is all the
implementations with the
same signature (name and
parameter types) in an
inheritance tree

“Method” can
mean any of
these. Be specific
when ambiguity
is possible.

All methods are public void

Contains the operations
f(int, bool) and g(int)

class D extends B {

h(int){…}

h(int, bool){…}

i(int){…}

}

class E {

f(int){…}

}

class A {

f(int){…}

f(int, bool){…}

g(int){…}

}

class B extends A {

f(int){…}

h(int){…}

}

class C extends B {

f(int){…}

f(int, bool){…}

h(int){…}

h(int, bool){…}

}

Which implementation gets run?

1. Resolve overloading at compile time
– Let R be the compile-time type of the receiver
– Choose the most specific, applicable, accessible operation

in R
• Accessible operations: Visible (public, private, protected)
• Applicable operations: Those whose parameter types are

supertypes of the argument types
• Most specific: its parameter types are subtypes of the

corresponding parameter types for other applicable ops
– If no most specific exists, compile-time error

This picks a method family or signature

2. Resolve overriding at run time (dynamic dispatch)
– Run the implementation in the run-time type of the

receiver
• Might be inherited from a superclass

