
Understanding an ADT implementation:
Abstraction functions

CSE 331
University of Washington

Michael Ernst

Outline of data abstraction lectures

Abstract
data type

Implementation
(e.g., Java class)

Abstraction
barrier

ADT
specification

ADT
implementation

ADT
represents

something in
the world

Today Abstraction function
(AF): Relationship between

ADT specification and
implementation

Representation invariant (RI):
Relationship among

implementation fields

Review: Connecting specifications
and implementations

Representation invariant: Object → boolean
Indicates whether rep/instance is well-formed

Defines the set of valid values of the data structure

Only well-formed representations are meaningful

Abstraction function: Object → abstract value
What the rep/instance means as an abstract value

How the rep/instance is to be interpreted

Used by implementors/maintainers of the
abstraction

Abstraction function:
rep → abstract value

The abstraction function maps the concrete representation to
the abstract value it represents

AF: Object → abstract value

AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Typically not executable (Why?)

The abstraction function lets us reason about concrete method
behavior from the client (abstract) perspective

Rep invariant constrains structure,
not meaning

An implementation of insert that preserves the rep invariant (no nulls
or duplicates in elts):
public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

elts.addElement(cc);

}

public boolean member(Character c) {

return elts.contains(c);

}

Implementation is still wrong; this client code observes incorrect behavior:

CharSet s = new CharSet();

s.insert('a');

if (s.member('a'))

…

Abstraction function and insert impl.

Our real goal is to satisfy the specification of insert:
// modifies: this

// effects: thispost = thispre U {c}

public void insert(Character c);

The AF tells us what the rep means (and lets us place the blame)

AF(CharSet this) = { c | c is contained in this.elts }
Consider a call insert(’a’):

On entry, the meaning is AF(thispre) ≈ eltspre

On exit, the meaning is AF(thispost) = AF(thispre) U {encrypt('a')}

What if we used this abstraction function instead?
AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }

The abstraction function:
concrete → abstract

Q: Why don’t we use the inverse of the AF? What
function maps abstract to concrete?

1. It’s not a function in the other direction.
E.g., lists [a,b] and [b,a] each represent the set {a, b}

2. To go from abstract to concrete, just construct
and modify objects via the provided operators

3. Not helpful in reasoning about impl cerrectness

A function maps
each argument to
at most one value

-2
-1
0
1
2
3
4

-2
-1
0
1
2
3
4

-2
-1
0
1
2
3
4

-2
-1
0
1
2
3
4

Function Not a function

Multiple reps for the
same abstract value

Stack rep:

int[] elements;

int top; // first unused index

0 0 0

17 0 0

T
o
p
=
1

17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <17>

stack = <17,-9>

17 -9 0

stack = <17>
T
o
p
=
1

Abstract states are the same
stack = <17> = <17>

Concrete states are different
<[17,0,0], top=1>

≠

<[17,-9,0], top=1>

AF is a function
AF-1 is not a function

new Stack()

push(17)

push(-9)

pop()

stack = <>

a u c t i o n c a u t i o n

Benevolent side effects

Different implementation of member:
boolean member(Character c) {

int i = elts.indexOf(c);

if (i == -1)

return false;

// move-to-front optimization

Character tmp = elts.elementAt(0);

elts.set(0, c);

elts.set(i, tmp);

return true;

}

Move-to-front speeds up repeated membership tests
Mutates rep, but does not change abstract value

AF maps both reps to the same abstract value

Example: { a, c, i, n, o, t, u } = AF() = AF()

r r’

a

op

AF AF

For any correct operation

Writing an abstraction function

The domain: all representations that satisfy the rep
invariant

The range: can be tricky to denote
For mathematical entities like sets: easy
For more complex abstractions: give them fields

AF defines the value of each “specification field”
For “derived specification fields”, see the handouts

The overview section of the specification should
provide a way of writing abstract values
This printed representation is valuable for debugging

(toString)

ADTs and Java language features

• Java classes
– Make operations in the ADT public
– Make other operations and fields of the class private
– Clients can only access ADT operations

• Java interfaces
– Clients only see the ADT, not the implementation
– Multiple implementations have no code in common
– Cannot include creators (constructors) or fields

• Both classes and interfaces are sometimes
appropriate
– Write and rely upon careful specifications
– Prefer interface types instead of specific classes in

declarations (e.g., List instead of ArrayList for
variables and parameters)

Connecting ADTs to implementations:
Summary

Rep invariant
Which concrete values represent abstract values

Abstraction function
For each concrete value, which abstract value it represents

Neither one is part of the abstraction (the ADT)
Use both to reason that an implementation satisfies the specification

They modularize the implementation
Can examine operators one at a time

When you program:
Always write a rep invariant (standard industry best practice)
Write an abstraction function when you need it

Write an informal one for most non-trivial classes
A formal one is harder to write and often less useful

Helps with reasoning and debugging

Invariants simplify reasoning

• Why focus so much on invariants (properties of
code that do not change)?

• Why focus so much on immutability (a specific
kind of invariant)?

• Software is complex – invariants/immutability
reduce the intellectual complexity

• If we can assume some property remains
unchanged, we don’t have to worry about it

• Reducing what we need to think about can be a
huge benefit

