Comparing procedure specifications

CSE 331
University of Washington

Michael Ernst
Outline

• Satisfying a specification; substitutability
• Stronger and weaker specifications
 – Comparing by hand
 – Comparing via logical formulas
 – Comparing via transition relations
 • Full transition relations
 • Abbreviated transition relations
• Specification style; checking preconditions
Satisfaction of a specification

• Let P be an implementation and S a specification
• *P satisfies S* iff
 – Every behavior of P is permitted by S
 – “The behavior of P is a subset of S”
• The statement “P is correct” is meaningless
 – Though often made!
• If P does not satisfy S, either (or both!) could be “wrong”
 – “One person’s feature is another person’s bug.”
 – It’s usually better to change the program than the spec
Why compare specifications?

We wish to compare procedures to specifications
– Does the procedure satisfy the specification?
– Has the implementer succeeded?

We wish to compare specifications to one another
– Which specification (if either) is stronger?
– **Substitutability:**
 A procedure satisfying a stronger specification can be used anywhere that a weaker specification is required
A specification denotes a set of procedures

Some set of procedures satisfies a specification

Suppose a procedure takes an integer as an argument

- Spec 1: “returns an integer ≥ its argument”
- Spec 2: “returns a non-negative integer ≥ its argument”
- Spec 3: “returns argument + 1”
- Spec 4: “returns argument^2”
- Spec 5: “returns Integer.MAX_VALUE”

Consider these implementations:

<table>
<thead>
<tr>
<th>Code 1: return arg * 2;</th>
<th>Spec1</th>
<th>Spec2</th>
<th>Spec3</th>
<th>Spec4</th>
<th>Spec5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 2: return abs(arg);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 3: return arg + 5;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 4: return arg * arg;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 5: return Integer.MAX_VALUE;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How does overflow affect answers?
Review:
Specification strength and substitutability

• A stronger specification promises more
 – It constrains the implementation more
 – The client can make more assumptions
 – *Weaker* preconditions ("contravariance")
 – Stronger postconditions

• Substitutability
 – A stronger specification can always be substituted for a weaker one
Procedure specifications

Example of a procedure specification:

```java
// requires i > 0
// modifies nothing
// returns true iff i is a prime number
public static boolean isPrime(int i)
```

General form of a procedure specification:

```java
// requires a logical formula (a Boolean expression)
// modifies a list of (Java) expressions
// throws a list of exceptions, each with a condition
// effects a logical formula (a Boolean expression)
// returns (a condition on) the return value; like “// effects result = ...”
```
How to compare specifications

Three ways to compare

1. By hand; examine each clause
 Advantage: can be checked manually

2. Logical formulas representing the specification
 Advantage: mechanizable in tools

3. Transition relations
 Advantage: captures intuition of “stronger = smaller”
 a. Full transition relations
 b. Abbreviated transition relations

Use whichever is most convenient
Technique 1: Comparing by hand

Idea: compare the specification field-by-field

S_2 is **stronger** than S_1 if

- S_2 requires is easier to satisfy (weaker requires)
 - Preconditions are **contravariant** (other clauses are **covariant**)
- S_2 modifies is smaller (stronger modifies)
- S_2 effects is harder to satisfy (stronger effects)
- S_2 throws guarantees more (stronger throws)
- S_2 returns guarantees more (stronger returns)

Trivia:

The **strongest** (most constraining) spec has the following:

- requires clause: true (equivalently, “requires nothing”)
- modifies clause: \emptyset (equivalently, “modifies nothing”)
- effects clause: false
- throws clause: nothing
- returns clause: \(\text{(there is no strongest returns clause)}\)

(This particular spec is so strong as to be useless.)
Technique 2: Comparing logical formulas

Essentially the same as technique 1.

Technique 1:
• 5 small comparisons
• Combine them to determine whether S_2 is stronger than S_1

Technique 2:
• One big comparison

Why do we care? Why should we learn another technique?
• Good for automated tools (you are unlikely to use it manually)
• Gives another perspective
• Helps to explicate rules (explains contravariance)
Technique 2: Comparing logical formulas

Specification S2 is stronger than S1 iff:
\[
\forall \text{ implementation } P, \ (P \text{ satisfies } S2) \Rightarrow (P \text{ satisfies } S1)
\]
If each specification is a logical formula, this is equivalent to:
\[
S2 \Rightarrow S1
\]
So, convert each spec to a formula (in 2 steps, see following slides)

This specification:

// requires R
// modifies M
// effects E

is equivalent to this single logical formula:
\[
R \Rightarrow (E \land (\text{nothing but } M \text{ is modified}))
\]

What about throws and returns? Absorb them into effects.

Final result: S2 is stronger than S1 iff
\[
(R_2 \Rightarrow (E_2 \land \text{only-modifies-}M_2)) \Rightarrow (R_1 \Rightarrow (E_1 \land \text{only-modifies-}M_1))
\]
Convert spec to formula, step 1: absorb **throws** and **returns** into **effects**

CSE 331 style:
- requires (unchanged)
- modifies (unchanged)
- throws
- effects
- returns

} correspond to resulting "effects"

Example (from `java.util.ArrayList<T>`):

```java
// requires: true
// modifies: this[index]
// throws: IndexOutOfBoundsException if index < 0 || index ≥ size()
// effects: this_{\text{post}}[\text{index}] = element
// returns: this_{\text{pre}}[\text{index}]
T \text{set}(\text{int} \ \text{index}, \ T \ \text{element})
```

Equivalent spec, after absorbing **throws** and **returns** into **effects**:

```java
// requires: true
// modifies: this[index]
// **effects**: if index < 0 || index ≥ size() then throws IndexOutOfBoundsException
// else this_{\text{post}}[\text{index}] = element && returns this_{\text{pre}}[\text{index}]
T \text{set}(\text{int} \ \text{index}, \ T \ \text{element})
```
Convert spec to formula, step 2: eliminate requires, modifies

Single logical formula

requires \Rightarrow (\text{effects} \land (\text{not-modified}))

“not-modified” preserves every field not in the modifies clause

Logical fact: If precondition is false, formula is true

Recall: For any \(x\) and \(y\): \(x \Rightarrow \text{true}; \ \text{false} \Rightarrow x; \ (x \Rightarrow y) \equiv (\neg x \lor y)\)

Example:

// requires: true
// modifies: this[index]
// effects: \(E\)

\(\text{T set} (\text{int index, T element})\)

Result:

\(\text{true} \Rightarrow (E \land (\forall i \neq \text{index}. \text{this}_{\text{pre}}[i] = \text{this}_{\text{post}}[i]))\)
Technique 3: Comparing transition relations

Transition relation relates **prestates** to **poststates**
- Includes all possible behaviors

Transition relation maps procedure arguments to results
```java
int increment(int i) {
    return i+1;
}
```

```java
// requires: a ≥ 0
double mySqrt(double a) {
    if (Random.nextBoolean())
        return Math.sqrt(a);
    else
        return - Math.sqrt(a);
}
```

A specification has a transition relation, too
- Contains just as much information as other forms of specification
Satisfaction via transition relations

A **stronger** specification has a **smaller** transition relation

Rule: \(P \) satisfies \(S \) iff \(P \) is a subset of \(S \)

(when both are viewed as transition relations)

sqrt specification \((S_{\text{sqrt}})\)

// **requires** \(x \) is a perfect square

// **returns** positive or negative square root

```
int sqrt(int x)
```

Transition relation: \(\langle 0,0 \rangle, \langle 1,1 \rangle, \langle 1,-1 \rangle, \langle 4,2 \rangle, \langle 4,-2 \rangle, \ldots \)

sqrt code \((P_{\text{sqrt}})\)

```
int sqrt(int x) {
    // ... always returns positive square root
}
```

Transition relation: \(\langle 0,0 \rangle, \langle 1,1 \rangle, \langle 4,2 \rangle, \ldots \)

\(P_{\text{sqrt}} \) satisfies \(S_{\text{sqrt}} \) because \(P_{\text{sqrt}} \) is a subset of \(S_{\text{sqrt}} \)
Beware transition relations in abbreviated form

“P satisfies S iff P is a subset of S” is a good rule
But it gives the **wrong answer** for transition relations in abbreviated form
(The transition relations we have seen so far are in abbreviated form!)

anyOdd specification (S_{anyOdd})

// requires $x = 0$
// returns any odd integer
int anyOdd(int x)

Abbreviated transition relation: $\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots$

anyOdd code (P_{anyOdd})

int anyOdd(int x) {
 return 3;
}

Transition relation: $\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots$

The code satisfies the specification, but the rule says it does not

P_{anyOdd} is not a subset of S_{anyOdd}
because $\langle 1,3 \rangle$ is not in the specification’s transition relation

We will see two solutions to this problem: **full** or **abbreviated** transition relations
Satisfaction via *full* transition relations (option 1)

The transition relation should make explicit everything an implementation may do.

Problem: Abbreviated transition relation for S does not indicate all possibilities.

anyOdd specification (S_{anyOdd}):

// requires $x = 0$
// returns any odd integer

```
int anyOdd(int x) {
    return 3;
}
```

Full transition relation: $\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots$

$\langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \ldots, \langle 1, \text{exception} \rangle, \langle 1, \text{infinite loop} \rangle, \ldots$

$\langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \ldots, \langle 2, \text{exception} \rangle, \langle 2, \text{infinite loop} \rangle, \ldots$

anyOdd code (P_{anyOdd}):

```
int anyOdd(int x) {
    return 3;
}
```

Transition relation: $\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots$

The rule “P satisfies S iff P is a subset of S” gives the right answer for full relations.

Downside: Writing the full transition relation is bulky and inconvenient.

It’s more convenient to make the implicit notational assumption:

For elements not in the domain of S, any behavior is permitted.

(Recall that a relation maps a *domain* to a *range*.)
Satisfaction via *abbreviated* transition relations (option 2)

New rule: \(P \) satisfies \(S \) iff \(P \mid (\text{Domain of } S) \) is a subset of \(S \)

where \("P \mid D" = "P \text{ restricted to the domain } D" \)

i.e., remove from \(P \) all pairs whose first member is not in \(D \)

(Recall that a relation maps a *domain* to a *range*.)

anyOdd specification \(S_{\text{anyOdd}} \)

// requires \(x = 0 \)

// returns any odd integer

```c
int anyOdd(int x) {
    return 3;
}
```

Abbreviated transition relation: \(\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots \)

anyOdd code \(P_{\text{anyOdd}} \)

```c
int anyOdd(int x) {
    return 3;
}
```

Transition relation: \(\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots \)

Domain of \(S = \{ 0 \} \)

\(P \mid (\text{domain of } S) = \langle 0,3 \rangle \), which is a subset of \(S \), so \(P \) satisfies \(S \).

The new rule gives the right answer even for abbreviated transition relations.

We’ll use this version of the notation in CSE 331.
Abbreviated transition relations, summary

True transition relation:
- Contains all the pairs, all comparisons work
- Bulky to read and write

Abbreviated transition relation
- Shorter and more convenient
- Naively doing comparisons leads to wrong result

How to do comparisons:
- Use the expanded transition relation, or
- Restrict the domain when comparing

Either approach makes the “smaller is stronger” intuition work
Review: ways to compare specifications

A stronger specification is satisfied by fewer implementations

A stronger specification has
- *weaker* preconditions (note contravariance)
- stronger postcondition
- fewer modifications

Advantage of this view: can be checked by hand

A stronger specification has a (logically) stronger formula

Advantage of this view: mechanizable in tools

A stronger specification has a smaller transition relation

Advantage of this view: captures intuition of “stronger = smaller” (fewer choices)
Specification style

The point of a specification is to be helpful
 Formalism helps, overformalism doesn't
A specification should be
 – coherent: not too many cases
 – informative: a bad example is `HashMap.get`
 – strong enough: to do something useful, to make guarantees
 – weak enough: to permit (efficient) implementation
A procedure has a side effect or is called for its value
 Bad style to have both effects and returns
Exception: return old value, as for `HashMap.put`
Should preconditions be checked?

Checking preconditions
- makes an implementation more robust
- provides better feedback to the client (fail fast)
- avoids silent failures, avoids delayed failures

Preconditions are common in “helper” methods/classes
- In public APIs, no precondition \Rightarrow handle all possible input
- Why does binarySearch impose a precondition?

Rule of thumb: Check if it is cheap to do so
- Example: list must be non-null \Rightarrow check
- Example: list must be sorted \Rightarrow don’t check

A quality implementation checks preconditions whenever it is *inexpensive* and *convenient* to do so