
Comparing
procedure specifications

CSE 331
University of Washington

Michael Ernst

Outline

• Satisfying a specification; substitutability

• Stronger and weaker specifications

– Comparing by hand

– Comparing via logical formulas

– Comparing via transition relations

• Full transition relations

• Abbreviated transition relations

• Specification style; checking preconditions

Satisfaction of a specification

• Let P be an implementation and S a specification
• P satisfies S iff

– Every behavior of P is permitted by S
– “The behavior of P is a subset of S”

• The statement “P is correct” is meaningless
– Though often made!

• If P does not satisfy S, either (or both!) could be
“wrong”
– “One person’s feature is another person’s bug.”
– It’s usually better to change the program than the spec

Why compare specifications?

We wish to compare procedures to specifications
– Does the procedure satisfy the specification?

– Has the implementer succeeded?

We wish to compare specifications to one another
– Which specification (if either) is stronger?

– Substitutability:
A procedure satisfying a stronger specification
can be used anywhere
that a weaker specification is required

A specification denotes a set of procedures

Some set of procedures satisfies a specification
Suppose a procedure takes an integer as an argument

Spec 1: “returns an integer ≥ its argument”
Spec 2: “returns a non-negative integer ≥ its argument”
Spec 3: “returns argument + 1”
Spec 4: “returns argument2 ”
Spec 5: “returns Integer.MAX_VALUE”

Consider these implementations:
Code 1: return arg * 2;
Code 2: return abs(arg);
Code 3: return arg + 5;
Code 4: return arg * arg;
Code 5: return Integer.MAX_VALUE;

Spec1 Spec2 Spec3 Spec4 Spec5

How does overflow affect answers?Ignore overflow

Yes

No

Review:
Specification strength and substitutability

• A stronger specification promises more

– It constrains the implementation more

– The client can make more assumptions

– Weaker preconditions (“contravariance”)

– Stronger postconditions

• Substitutability

– A stronger specification can always be substituted
for a weaker one

Procedure specifications

Example of a procedure specification:
// requires i > 0
// modifies nothing
// returns true iff i is a prime number
public static boolean isPrime(int i)

General form of a procedure specification:
// requires a logical formula (a Boolean expression)
// modifies a list of (Java) expressions
// throws a list of exceptions, each with a condition
// effects a logical formula (a Boolean expression)
// returns (a condition on) the return value; like

“// effects result = …”

How to compare specifications

Three ways to compare
1. By hand; examine each clause

Advantage: can be checked manually
2. Logical formulas representing the specification

Advantage: mechanizable in tools
3. Transition relations

Advantage: captures intuition of “stronger = smaller”
a. Full transition relations
b. Abbreviated transition relations

Use whichever is most convenient

Technique 1: Comparing by hand

Idea: compare the specification field-by-field
S2 is stronger than S1 if

S2 requires is easier to satisfy (weaker requires)
Preconditions are contravariant (other clauses are covariant)

S2 modifies is smaller (stronger modifies)
S2 effects is harder to satisfy (stronger effects)
S2 throws guarantees more (stronger throws)
S2 returns guarantees more (stronger returns)

Trivia:
The strongest (most constraining) spec has the following:

requires clause: true (equivalently, “requires nothing”)
modifies clause: ∅ (equivalently, “modifies nothing”)
effects clause: false
throws clause: nothing
returns clause: (there is no strongest returns clause)
(This particular spec is so strong as to be useless.)

Technique 2: Comparing logical formulas

Essentially the same as technique 1 (comparing by hand).

Technique 1:

• 5 small comparisons

• Combine them to determine whether S2 is stronger than S1

Technique 2:

• One big comparison

Why do we care? Why should we learn another technique?

• Good for automated tools (you are unlikely to use it manually)

• Gives another perspective

• Helps to explicate rules (explains contravariance)

Technique 2: Comparing logical formulas
Specification S2 is stronger than S1 iff:

 implementation P, (P satisfies S2)  (P satisfies S1)

If each specification is a logical formula, this is equivalent to:

S2  S1

So, convert each spec to a formula (in 2 steps, see following slides)

This specification:

// requires R

// modifies M

// effects E

is equivalent to this single logical formula:

R  (E  (nothing but M is modified))

What about throws and returns? Absorb them into effects.

Final result: S2 is stronger than S1 iff

(R2  (E2  only-modifies-M2))  (R1  (E1  only-modifies-M1))

Convert spec to formula, step 1:
absorb throws and returns into effects
CSE 331 style:

requires (unchanged)
modifies (unchanged)
throws
effects correspond to resulting "effects"
returns

Example (from java.util.ArrayList<T>):
// requires: true
// modifies: this[index]
// throws: IndexOutOfBoundsException if index < 0 || index ≥ size()
// effects: thispost[index] = element
// returns: thispre[index]
T set(int index, T element)

Equivalent spec, after absorbing throws and returns into effects:
// requires: true
// modifies: this[index]
// effects: if index < 0 || index ≥ size() then throws IndexOutOfBoundsException
// else thispost[index] = element && returns thispre[index]
T set(int index, T element)

}

Convert spec to formula, step 2:
eliminate requires, modifies

Single logical formula
requires  (effects  (not-modified))

“not-modified” preserves every field not in the modifies clause

Logical fact: If precondition is false, formula is true
Recall: For any x and y: x  true; false  x; (x  y)  (x  y)

Example:
// requires: true
// modifies: this[index]
// effects: E
T set(int index, T element)

Result:
true  (E  (i≠index. thispre[i] = thispost[i]))

Technique 3: Comparing transition relations

Transition relation relates prestates to poststates

Includes all possible behaviors

Transition relation maps procedure arguments to results
int increment(int i) {

return i+1;

}

// requires: a ≥ 0

double mySqrt(double a) {

if (Random.nextBoolean())

return Math.sqrt(a);

else

return - Math.sqrt(a);

}

A specification has a transition relation, too

Contains just as much information as other forms of specification

-2
-1
0
1
2
3
4

-2
-1
0
1
2
3
4

-2
-1
0
1
2
3
4

-2
-1
0
1
2
3
4

Satisfaction via transition relations

A stronger specification has a smaller transition relation
Rule: P satisfies S iff P is a subset of S

(when both are viewed as transition relations)
sqrt specification (Ssqrt)

// requires x is a perfect square
// returns positive or negative square root
int sqrt(int x)

Transition relation: 0,0, 1,1, 1,-1, 4,2, 4,-2, …
sqrt code (Psqrt)

int sqrt(int x) {

// … always returns positive square root

}

Transition relation: 0,0, 1,1, 4,2, …
Psqrt satisfies Ssqrt because Psqrt is a subset of Ssqrt

Expressed as
input,output
pairs

Beware transition relations in
abbreviated form

“P satisfies S iff P is a subset of S” is a good rule
But it gives the wrong answer for transition relations in abbreviated form
(The transition relations we have seen so far are in abbreviated form!)

anyOdd specification (SanyOdd)
// requires x = 0
// returns any odd integer
int anyOdd(int x)

Abbreviated transition relation: 0,1, 0,3, 0,5, 0,7, …
anyOdd code (PanyOdd)

int anyOdd(int x) {

return 3;

}

Transition relation: 0,3, 1,3, 2,3, 3,3, …
The code satisfies the specification, but the rule says it does not

PanyOdd is not a subset of SanyOdd

because 1,3 is not in the specification’s transition relation
We will see two solutions to this problem: full or abbreviated transition relations

Satisfaction via full transition
relations (option 1)

The transition relation should make explicit everything an implementation may do.
Problem: Abbreviated transition relation for S does not indicate all possibilities.

anyOdd specification (SanyOdd): // same as before
// requires x = 0
// returns any odd integer
int anyOdd(int x)

Full transition relation: 0,1, 0,3, 0,5, 0,7, … // on previous slide
1, 0, 1, 1, 1, 2, …, 1, exception, 1, infinite loop, … // new
2, 0, 2, 1, 2, 2, …, 2, exception, 2, infinite loop, … // new

anyOdd code (PanyOdd): // same as before
int anyOdd(int x) {

return 3;

}

Transition relation: 0,3, 1,3, 2,3, 3,3, … // same as before
The rule “P satisfies S iff P is a subset of S” gives the right answer for full relations.
Downside: Writing the full transition relation is bulky and inconvenient.

It’s more convenient to make the implicit notational assumption:
For elements not in the domain of S, any behavior is permitted.
(Recall that a relation maps a domain to a range.)

Satisfaction via abbreviated transition
relations (option 2)

New rule: P satisfies S iff P | (Domain of S) is a subset of S
where “P | D” = “P restricted to the domain D”

i.e., remove from P all pairs whose first member is not in D
(Recall that a relation maps a domain to a range.)

anyOdd specification (SanyOdd)
// requires x = 0
// returns any odd integer
int anyOdd(int x)

Abbreviated transition relation: 0,1, 0,3, 0,5, 0,7, …
anyOdd code (PanyOdd)

int anyOdd(int x) {

return 3;

}

Transition relation: 0,3, 1,3, 2,3, 3,3, …
Domain of S = { 0 }
P | (domain of S) = 0,3, which is a subset of S, so P satisfies S.
The new rule gives the right answer even for abbreviated transition relations.

We’ll use this version of the notation in CSE 331.

Abbreviated transition relations,
summary

True transition relation:
Contains all the pairs, all comparisons work
Bulky to read and write

Abbreviated transition relation
Shorter and more convenient
Naively doing comparisons leads to wrong result

How to do comparisons:
– Use the expanded transition relation, or
– Restrict the domain when comparing

Either approach makes the “smaller is stronger”
intuition work

Review: ways to compare specifications

A stronger specification is satisfied by fewer implementations
A stronger specification has

– weaker preconditions (note contravariance)
– stronger postcondition
– fewer modifications
Advantage of this view: can be checked by hand

A stronger specification has a (logically) stronger formula
Advantage of this view: mechanizable in tools

A stronger specification has a smaller transition relation
Advantage of this view: captures intuition of “stronger = smaller”

(fewer choices)

Specification style

The point of a specification is to be helpful
Formalism helps, overformalism doesn't

A specification should be
– coherent: not too many cases

– informative: a bad example is HashMap.get

– strong enough: to do something useful, to make
guarantees

– weak enough: to permit (efficient) implementation

A procedure has a side effect or is called for its value
Bad style to have both effects and returns

Exception: return old value, as for HashMap.put

Should preconditions be checked?

Checking preconditions
– makes an implementation more robust
– provides better feedback to the client (fail fast)
– avoids silent failures, avoids delayed failures

Preconditions are common in “helper” methods/classes
– In public APIs, no precondition ⇒ handle all possible input
– Why does binarySearch impose a precondition?

Rule of thumb: Check if it is cheap to do so
– Example: list must be non-null ⇒ check
– Example: list must be sorted ⇒ don’t check

A quality implementation checks preconditions whenever it is
inexpensive and convenient to do so

