
Introduction to
CSE 331

Software Design & Implementation

CSE 331
University of Washington

Michael Ernst

Welcome to CSE 331!

CSE 331 will teach you how to write correct programs
• What does it mean for a program to be correct?

– Specifications

• What are ways to achieve correctness?
– Principled design and development
– Abstraction, modularity
– Documentation

• What are ways to verify correctness?
– Testing
– Reasoning and verification

• Moving beyond novice programming
– Larger programs

• Small programs are easy; complexity changes everything

– Effective use of tools: Java, IDEs, debuggers, JUnit, Javadoc, Git
• Principles ≫ tools

Managing complexity

• Abstraction and specification
– Procedural, data, control flow
– Why they are useful and how to use them

• Writing, understanding, and reasoning about code
– The examples are in Java, but the issues are more general
– Object-oriented programming

• Program design and documentation
– What makes a design good or bad (example: modularity)
– The process of design and design tools

• Pragmatic considerations
– Testing
– Debugging and defensive programming
– Managing software projects (more in CSE 403)

The goal of system building

• To create a correctly functioning artifact!

• All other matters are secondary

– Many of them are essential to producing a correct
system

• We insist that you learn to create correct
systems

– This is hard (but fun and rewarding!)

Why is building good software hard?

• Large software systems are enormously complex
– Millions of “moving parts”

• People expect software to be malleable
– After all, it’s “only software”
– Software mitigates the deficiencies of other components

• We are always trying to do new things with software
– Relevant experience often missing

• Software engineering is about:
– Managing complexity
– Managing change
– Coping with potential defects

• Customers, developers, environment, software

– Communication (with people and computers)

Programming is hard

• It is surprisingly difficult to specify, design,
implement, test, debug, and maintain even a
simple program

• CSE 331 will challenge you
• If you are having trouble, think before you act

– Then, look for help

• The assignments are reasonable if you apply
the techniques taught in class
– … but hard to do in a brute-force manner
– There is a method to our madness

CSE 331 is hard (but very rewarding)

• You will learn a lot!

• Be prepared to work and to think

• The staff will help you learn

– We will work hard as hard as you do

Course staff

• Lecturer:
– Michael Ernst

• TAs:
– Alexey Beall
– Avidant Bhagat
– Michael Hart
– Anny Kong
– Kaushal Mangipudi
– Jacob Murphy
– Kaidi Pei
– Jason Qiu
– Andrew Tran
– Joyce Zhou

Ask us for help!

Prerequisites

• Knowing Java is a prerequisite
– We assume you have mastered 142 and 143
– … and you remember it

Examples:
• Sharing:

– Distinction between == and equals()
– Aliasing (multiple references to the same object)

• Subtyping
– Varieties: classes, interfaces
– Inheritance and overriding

• Object-oriented dispatch:
– Expressions have a compile-time type
– Objects/values have a run-time type

Logistics

• Website: https://cs.washington.edu/331

• See the website for all administrative details

• Read the handouts and required texts

• Take notes

• First assignment will be posted today

• You get 4 late days throughout the quarter

– No other extensions (contact the instructor if you are hospitalized)

Academic Integrity

• Honest work is required of an engineer
• Collaboration policy on the course web. Read it!

– Discussion is permitted
– Carrying materials from discussion is not permitted
– Everything you turn in must be your own work

• Cite your sources, explain any unconventional action

– You may not view others’ work
– If you have a question, ask

• I trust you completely
• I have no sympathy for trust violations – nor

should you

