
 CSE 331 Midterm Exam 2/20/13

 Page 1 of 13

Name __

There are 8 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc.

Many of the questions may have short solutions, even if the question is somewhat long.

Don’t be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s

output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 16

2. ______ / 12

3. ______ / 10

4. ______ / 12

5. ______ / 20

6. ______ / 18

7. ______ / 6

8. ______ / 6

 CSE 331 Midterm Exam 2/20/13

 Page 2 of 13

Question 1. (16 points) (assertions) Using backwards reasoning, find the weakest

precondition for each sequence of statements and postcondition below. Insert appropriate

assertions in each blank line. You should simplify your answers if possible.

(a)

 { __ }

 z = x + y;

 { __ }

 y = z - 3;

 { x > y }

(b)

 { __ }

 p = a + b;

 { __ }

 q = a - b;

 { p + q = 42 }

 CSE 331 Midterm Exam 2/20/13

 Page 3 of 13

Question 2. (12 points) Specification madness. Suppose we are implementing a

BankAccount class that has the following heading and instance variable:

public class BankAccount {

 int balance; // current account balance

Here are three possible specifications for a method withdraw(amount) to withdraw

funds from the account. To save space, we have omitted the @modifies this clause,

which would be part of all of the specifications.

A @effects decreases balance by amount

B @requires amount <= balance and amount >= 0

 @effects decreases balance by amount

C @throws InsufficientFundsException if balance < amount

 @effects decreases balance by amount

Now, here are four possible implementations of method withdraw:

I void withdraw(int amount) {

 balance -= amount;

 }

II void withdraw(int amount) {

 if (balance >= amount) balance -= amount;

 }

III void withdraw(int amount) {

 if (amount < 0) throw new IllegalArgumentException();

 balance -= amount;

 }

IV void withdraw(int amount) throws InsufficientFundsException {

 if (balance < amount) throw new InsufficientFundsException();

 balance -= amount;

 }

(continued on next page – you may remove this page for reference.)

 CSE 331 Midterm Exam 2/20/13

 Page 4 of 13

Question 2. (cont.) In the following table, put an X in each square where the

implementation whose number is given on the left properly implements the specification

whose letter is given at the top. If a given implementation does not meet a specification,

or if a specification is improperly formed, inconsistent, or otherwise defective, leave the

square blank.

 Spec A Spec B Spec C

Impl I

Impl II

Impl III

Impl IV

 CSE 331 Midterm Exam 2/20/13

 Page 5 of 13

The next several questions concern the following class that represents immutable,

integer-valued polynomials, similar to the one sketched in examples in lecture.

The basic class definition and rep are as follows:

/**

 * An IntPoly is an immutable, integer-valued polynomial

 * with integer coefficients. A typical IntPoly value

 * is a_0 + a_1*x + a_2*x^2 + ... + a_n*x_n. An IntPoly

 * with degree n has coefficent a_n != 0, except that the

 * zero polynomial is represented as a polynomial of

 * degree 0 and a_0 = 0 in that case.

 */

public class IntPoly {

 // rep

 int a[]; // Coefficients

 // AF(this) = a has n+1 entries, and for each entry,

 // a[i] = coefficient a_i of the polynomial.

Two of the methods of the class are the following:

 /**

 * Return the coefficients of this IntPoly

 */

 public int[] getCoeffs() {

 return a;

 }

 /**

 * Return a new IntPoly that is the sum of this and other

 */

 public IntPoly add(IntPoly other) {

 // implementation omitted

 }

See the questions concerning this class on the following pages. You may remove this

page for reference if you wish.

 CSE 331 Midterm Exam 2/20/13

 Page 6 of 13

Question 3. (10 points) The above add method does not have a careful specification.

Below, give a complete, appropriate specification for method add. If some part of the

specification would be empty or “none”, say so explicitly.

 /**

 * Return a new IntPoly that is the sum of this and other

 *

 * @requires

 * @modifies

 * @effects

 * @return

 * @throws

 */

 public IntPoly add(IntPoly other) {

 ...

 }

 CSE 331 Midterm Exam 2/20/13

 Page 7 of 13

Question 4. (12 points) (rep exposure) The observer getCoeffs method shown above

returns to the client an array with the coefficients of this IntPoly.

 /**

 * Return the coefficients of this IntPoly

 */

 public int[] getCoeffs() {

 return a;

 }

(a) One of your colleagues is worried that this creates a potential representation exposure

problem. Another colleague says there’s no problem since an IntPoly is immutable.

Is there a problem? Give a brief justification for your answer.

(b) If there is a representation exposure problem, give a new or repaired implementation

of getCoeffs that fixes the problem but still returns the coefficients of the IntPoly

to the client. If it saves time you can give a precise description of the changes needed

instead of writing the detailed Java code.

 CSE 331 Midterm Exam 2/20/13

 Page 8 of 13

Question 5. (20 points) Loop development. We would like to add a method to this class

that evaluates the IntPoly at a particular value x. In other words, given a value x, the

method valueAt(x) should return a0 + a1x + a2x
2
 + ... + anx

n
, where a0 through an are

the coefficients of this IntPoly.

For this problem, develop an implementation of this method and prove that your

implementation is correct. For full credit, you must invent an appropriate loop invariant

and show it is established by any initialization code, is maintained as the loop executes,

and that after termination of the loop plus any additional code, the proper result (value) is

returned to the caller. Your proof does not need to be completely formal, but needs to be

sufficiently careful to convince the reader that the code and proof are correct (i.e., you

can skip over tedious, obvious logic steps and simplifications – provided they really are

obvious).

You may not call any other methods. This method should be self-contained.

Write

 Your

 Answer

 On the

 Next page …

(Use the rest of this page for scratch work, but please put your answer on the next page.)

 CSE 331 Midterm Exam 2/20/13

 Page 9 of 13

Question 5. (cont.) Write your code and correctness proof below.

 /** Return the value of this IntPoly at point x */

 public int valueAt(int x) {

 }

 CSE 331 Midterm Exam 2/20/13

 Page 10 of 13

Question 6. (18 points) Suppose we are defining a class to represent items stocked by an

online grocery store. Here is the start of the class definition, including the class name and

instance variables (rep):

public class StockItem {

 String name; // item name (e.g., "Fancy Feast")

 String size; // size ("small", "12oz", etc.)

 String description; // item description (e.g., “yummy food”)

 int quantity; // number of copies of this item in stock

 /** Construct a new StockItem with the given data */

 public StockItem(String name, String size,

 String decription, int quantity) { ... }

A summer intern was asked to implement an equals function for this class that treats two

StockItem objects as equal if their name and size fields match. Here’s the result:

 /** return true if the name and size fields match */

 public boolean equals(StockItem other) {

 return name.equals(other.name) && size.equals(other.size); }

(a) (4 points) This equals method seems to work some of the time but not always.

Give an example showing a situation where it fails.

(continued next page)

 CSE 331 Midterm Exam 2/20/13

 Page 11 of 13

Question 6 (cont.) (b) (4 points) Show how to fix the equals method given above so it

works properly and has the intended meaning (e.g., StockItems are equal if their

names and sizes are equal)

(you won’t need all this space probably….)

(continued next page)

 CSE 331 Midterm Exam 2/20/13

 Page 12 of 13

Question 6. (cont.) (8 points) (c) Here are four possible hashCode methods for class

StockItem. For each of these hashCode methods, circle legal if the method is a

correct implementation of hashCode for StockItem, as specified on the previous

pages. Circle wrong if it is not a correct implementation.

(i) legal wrong

 public int hashCode() {

 return name.hashCode();

 }

(ii) legal wrong

 public int hashCode() {

 return name.hashCode()*17+size.hashCode();

 }

(iii) legal wrong

 public int hashCode() {

 return name.hashCode()*17+quantity;

 }

(iv) legal wrong

 public int hashCode() {

 return quantity;

 }

(d) (2 points) Of the four hashCode methods above, which one is the best and (briefly)

why?

 CSE 331 Midterm Exam 2/20/13

 Page 13 of 13

Question 7. (6 points) (specifications) Suppose we are specifying a method and we have

a choice between either requiring a precondition (e.g., @requires: n > 0) or specifying

that the method throws an exception under some circumstances (e.g., @throws

IllegalArgumentException if n <= 0).

Assuming that neither version will be significantly more expensive to implement than the

other and that we do not expect the precondition to be violated or the exception to be

thrown in normal use, is there any reason to prefer one of these to the other, and, if so,

which one? Give a brief (couple of sentences) justification along with your answer.

Question 8. (6 points) (specifications) Suppose we are trying to choose between two

possible specifications for a method. One of the specifications S is stronger than the

other specification W, but both include the behavior needed by clients. In practice,

should we always pick the stronger specification S, always pick the weaker one W, or is

it possible that either one might be the suitable choice? Give a brief justification of your

answer, including a brief list of the main criteria to be used in making the decision.

