
Final review

Stronger vs Weaker (one more
time!)
•Requires more?

•Promises more? (stricter specifications on what the effects
entail)

Stronger vs Weaker (one more
time!)
•Requires more?

•Promises more? (stricter specifications on what the effects
entail)

weaker

stronger

Stronger vs Weaker

A.@requires key is a key in this and key != null
@return the value associated with key

A.@return the value associated with key if key is a
key in this, or null if key is not associated

with any value
B.@return the value associated with key
@throws NullPointerException if key is null
@throws NoSuchElementException if key is not a
key this

@requires key is a key in this
@return the value associated with key
@throws NullPointerException if key is null

Stronger vs Weaker

A.@requires key is a key in this and key != null
@return the value associated with key

A.@return the value associated with key if key is a
key in this, or null if key is not associated

with any value
B.@return the value associated with key
@throws NullPointerException if key is null
@throws NoSuchElementException if key is not a
key this

@requires key is a key in this
@return the value associated with key
@throws NullPointerException if key is null

WEAKER

STRONGER

NEITHER

Exceptions
• Unchecked exceptions are ignored by the compiler.

• If a method throws a checked exception or calls a method
that throws a checked exception, then it must either:

1. catch the exception
2. declare it in @throws

Exceptions Examples
Should these be checked or unchecked?

• Attempt to write an invalid type into an array
E.g., write Double into Integer[] cast to Number[]

• Attempt to open a file that does not exist

• Attempt to create a URL from invalidly formatted text
E.g., “http:/foo” (only one “/”)

Exceptions Examples
Should these be checked or unchecked?

• Attempt to write an invalid type into an array
E.g., write Double into Integer[] cast to Number[]

unchecked

• Attempt to open a file that does not exist
checked

• Attempt to create a URL from invalidly formatted text
E.g., “http:/foo” (only one “/”)

debatable – could see either one

Subtypes & Subclasses
•Subtypes are substitutable for supertypes
•If Foo is a subtype of Bar, G<Foo> is a NOT a subtype
of G<Bar>

•Aliasing resulting from this would let you add objects of type Bar
to G<Foo>, which would be bad!
•Example:

List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
lo.add(new Object());
String s = ls.get(0);

•Subclassing is done to reuse code (extends)
•A subclass can override methods in its superclass

Typing and Generics
•<?> is a wildcard for unknown

•Upper bounded wildcard: type is wildcard or subclass
•Eg: List<? extends Shape>
•Illegal to write into (no calls to add!) because we can’t
guarantee type safety.

•Lower bounded wildcard: type is wildcard or superclass
•Eg: List<? super Integer>
•May be safe to write into.

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse;

les = lscse;

lcse = lscse;

les.add(scholar);

lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse;

lcse = lscse;

les.add(scholar);

lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse;

les.add(scholar);

lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse; X
les.add(scholar);

lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse; X
les.add(scholar); X
lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse; X
les.add(scholar); X
lscse.add(scholar); X
lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse; X
les.add(scholar); X
lscse.add(scholar); X
lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse; X
les.add(scholar); X
lscse.add(scholar); X
lss.add(hacker);

scholar = lscse.get(0);X
hacker = lecse.get(0);

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;
List<? extends Student> les;
List<? super Student> lss;
List<CSEStudent> lcse;
List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;
Student scholar;
CSEStudent hacker;

ls = lcse; X
les = lscse; X
lcse = lscse; X
les.add(scholar); X
lscse.add(scholar); X
lss.add(hacker);

scholar = lscse.get(0);X
hacker = lecse.get(0);

Subclasses & Overriding
class Foo extends Object {

Shoe m(Shoe x, Shoe y){ ... }
}

class Bar extends Foo {...}

Method Declarations in Bar

•FootWear m(Shoe x, Shoe y) { ... }

•Shoe m(Shoe q, Shoe z) { ... }

•HighHeeledShoe m(Shoe x, Shoe y) { ... }

•Shoe m(FootWear x, HighHeeledShoe y) { ... }

•Shoe m(FootWear x, FootWear y) { ... }

•Shoe m(Shoe x, Shoe y) { ... }

•Shoe m(HighHeeledShoe x, HighHeeledShoe y) { ... }

•Shoe m(Shoe y) { ... }

•Shoe z(Shoe x, Shoe y) { ... }

• The result is method overriding
• The result is method overloading
• The result is a type-error
• None of the above

Object
↓

Foo
↓

Bar

Footwear
↓

Shoe
↓

HighHeeledShoe

type-error
overriding

overriding

overloading

overloading
overriding

overloading
overloading

none (new method declaration)

Event-Driven Programs
• Sits in an event loop, waiting for events to process

• often does so until forcibly terminated

• Two common types of event-driven programs:

1. GUIs
2. Web servers

• Where is the event loop in Java AWT/Swing?
• it is created behind the scenes when you call
JFrame.setVisible(true)

Design Patterns
•Creational patterns: get around Java constructor
inflexibility

•Sharing: singleton, interning
•Telescoping constructor fix: builder
•Returning a subtype: factories

•Structural patterns: translate between interfaces
•Adapter: same functionality, different interface
•Decorator: different functionality, same interface
•Proxy: same functionality, same interface, restrict access
•All of these are types of wrappers

Design Patterns
•Interpreter pattern:

•Collects code for similar objects, spreads apart code for operations
(classes for objects with operations as methods in each class)
•Easy to add objects, hard to add methods
•Instance of Composite pattern

•Procedural patterns:
•Collects code for similar operations, spreads apart code for objects
(classes for operations, method for each operand type)
•Easy to add methods, hard to add objects
•Ex: Visitor pattern

Design Patterns

•What pattern would you use to…
•add a scroll bar to an existing window object in Swing

•We have an existing object that controls a communications
channel. We would like to provide the same interface to clients but
transmit and receive encrypted data over the existing channel.

•When the user clicks the “find path” button in the Campus Maps
application (hw9), the path appears on the screen.

Adapter, Builder, Composite, Decorator, Factory, Flyweight, Iterator, Intern,
Interpreter, Model-View-Controller (MVC), Observer, Procedural, Prototype,
Proxy, Singleton, Visitor, Wrapper

Design Patterns

•What pattern would you use to…
•add a scroll bar to an existing window object in Swing

•Decorator
•We have an existing object that controls a communications
channel. We would like to provide the same interface to clients but
transmit and receive encrypted data over the existing channel.

•Proxy
•When the user clicks the “find path” button in the Campus Maps
application (hw9), the path appears on the screen.

•MVC
•Observer

Adapter, Builder, Composite, Decorator, Factory, Flyweight, Iterator, Intern,
Interpreter, Model-View-Controller (MVC), Observer, Procedural, Prototype,
Proxy, Singleton, Visitor, Wrapper

