
Section	5:
HW6	and	Midterm
Slides	by	Vinod	Rathnam and	Geoffrey	Liu

(with	material	from	Alex	Mariakakis,
Kellen	Donohue,	David	Mailhot,	and	Hal	Perkins)

Breadth-First	Search	(BFS)

Often	used	for	discovering	connectivity

Calculates	the	shortest	path	if	and	only	if	all	edges	have	same	positive	or	no	weight

Depth-first	search	(DFS)	is	commonly	mentioned	with	BFS
BFS	looks	“wide”,	DFS	looks	“deep”
Can	also	be	used	for	discovery,	but	not	the	shortest	path

BFS	Pseudocode

public boolean find(Node start, Node end) {
put start node in a queue
while (queue is not empty) {

pop node N off queue
if (N == end)

return true;
else {

for each node O that is child of N
push O onto queue

}
}
return false;

}

Breadth-First	Search

START: Starting	at	A
Q:	<A> Goal:	Fully	explore
Pop:	A,	Q:	<>
Q:	<B,	C>
Pop:	B,	Q:	<C>
Q:	<C>
Pop:	C,	Q:	<C>
Q:	<>
DONE

A

B C

Breadth-First	Search	with	Cycle

START: Starting	at	A
Q:	<A> Goal:	Fully	Explore
Pop:	A,	Q:	<>
Q:	
Pop:	B,	Q:	<>
Q:	<C>
Pop:	C,	Q:	<>
Q:	<A>
NEVER	DONE

A

B C

BFS	Pseudocode

public boolean find(Node start, Node end) {
put start node in a queue
while (queue is not empty) {

pop node N off queue
mark node N as visited

if (N is goal)
return true;

else {
for each node O that is child of N

if O is not marked visited
push O onto queue

}
}
return false;

}
Mark	the	node	as	visited!

Breadth-First	Search

Q:	<>

A

B

C D

E

Breadth-First	Search

Q:	<>
Q:	<A>

A

B

C D

E

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<> A

E

B

DC

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<>
Q:	<C>

A

C

E

B

D

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<>
Q:	<C>
Q:	<C	,D>

A

C D

E

B

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<>
Q:	<C>
Q:	<C	,D>
Q:	<D>

A

C D

B

E

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<>
Q:	<C>
Q:	<C	,D>
Q:	<D>
Q:	<D,	E>

A

C D

E

B

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<>
Q:	<C>
Q:	<C	,D>
Q:	<D>
Q:	<D,	E>
Q:	<E>

A

C D

E

B

Breadth-First	Search

Q:	<>
Q:	<A>
Q:	<>
Q:	<C>
Q:	<C	,D>
Q:	<D>
Q:	<D,	E>
Q:	<E>
DONE

A

C D

E

B

Shortest	Paths	with	BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D

E

From	Node	B

A

B

C D

E

1

1

1

11

1

1

Shortest	path	to	D?	to	E?
What	are	the	costs?

Shortest	Paths	with	BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From	Node	B

A

B

C D

E

1

1

1

11

1

1

Shortest	Paths	with	Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D

E

From	Node	B
2

100

2

62

3

100

Weights	are	not	the	same!
Are	the	paths?

Shortest	Paths	with	Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From	Node	B
2

100

2

62

3

100

Midterm	review

Midterm	topics
Reasoning	about	code Identity	&	equality

Specification	vs.	Implementation Testing

Abstract Data	Types	(ADTs)

Reasoning	about	code	1
Using	backwards	reasoning,	find	the	weakest	precondition	for	each	sequence	of	statements	
and	postcondition below.	Insert	appropriate	assertions	in	each	blank	line.	You	should	simplify	
your	answers	if	possible.

{_______________}
z = x + y;
{_______________}
y = z – 3;
{x > y}

Reasoning	about	code	1
Using	backwards	reasoning,	find	the	weakest	precondition	for	each	sequence	of	statements	
and	postcondition below.	Insert	appropriate	assertions	in	each	blank	line.	You	should	simplify	
your	answers	if	possible.

{_______________}
z = x + y;
{x > z – 3}
y = z – 3;
{x > y}

Reasoning	about	code	1
Using	backwards	reasoning,	find	the	weakest	precondition	for	each	sequence	of	statements	
and	postcondition below.	Insert	appropriate	assertions	in	each	blank	line.	You	should	simplify	
your	answers	if	possible.

{x > x + y – 3 => y < 3}
z = x + y;
{x > z – 3}
y = z – 3;
{x > y}

Reasoning	about	code	1
Using	backwards	reasoning,	find	the	weakest	precondition	for	each	sequence	of	statements	
and	postcondition below.	Insert	appropriate	assertions	in	each	blank	line.	You	should	simplify	
your	answers	if	possible.

{_______________}
p = a + b;
{_______________}
q = a - b;
{p + q = 42}

Reasoning	about	code	1
Using	backwards	reasoning,	find	the	weakest	precondition	for	each	sequence	of	statements	
and	postcondition below.	Insert	appropriate	assertions	in	each	blank	line.	You	should	simplify	
your	answers	if	possible.

{_______________}
p = a + b;
{p + a - b = 42}
q = a - b;
{p + q = 42}

Reasoning	about	code	1
Using	backwards	reasoning,	find	the	weakest	precondition	for	each	sequence	of	statements	
and	postcondition below.	Insert	appropriate	assertions	in	each	blank	line.	You	should	simplify	
your	answers	if	possible.

{a + b + a – b = 42 ⇒ a = 21}
p = a + b;
{p + a - b = 42}
q = a - b;
{p + q = 42}

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

I. void withdraw(int amount) {
balance -= amount;

}

Another	way	to	ask	the	
question:	

If	the	client	does	not	know	the	
implementation,	will	the	
method	do	what	the	client	
expects	it	to	do	based	on	the	
specification?

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

I. void withdraw(int amount) {
balance -= amount;

}

✔ does	exactly	what	the	spec	says

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

I. void withdraw(int amount) {
balance -= amount;

}

✔ does	exactly	what	the	spec	says

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

I. void withdraw(int amount) {
balance -= amount;

}

✔ does	exactly	what	the	spec	says

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

✘Method	never	throws	an	exception

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

✘ balance	does	not	always	decrease

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

✘ balance	does	not	always	decrease

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

II. void withdraw(int amount) {
if (balance >= amount) balance -= amount;

}

✘ balance	does	not	always	decrease

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

✘Method	never	throws	an	exception

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

✘ balance	does	not	always	decrease

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

✘ balance	does	not	always	decrease

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

III.void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException();
balance -= amount;

}

✘ balance	does	not	always	decrease

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

✘Method	throws	wrong	exception	for	wrong	reason

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

✘ balance	does	not	always	decrease

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

✘ balance	does	not	always	decrease

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

Specification	vs.	Implementation
Suppose	we	have	a	BankAccount class	with	instance	variable	balance.	Consider	the	following	specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
if balance < amount

@effects decreases balance by amount

Which	specifications	does	this	implementation	meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
if (balance < amount) throw new InsufficientFundsException();
balance -= amount;

}

✘ balance	does	not	always	decrease

✔ If	the	client	follows	the	@requires
precondition,	the	code	will	execute	as	expected

✔Method	does	what	the	spec	says

Specifications	2
/**
* An IntPoly is an immutable, integer-valued polynomial
* with integer coefficients. A typical IntPoly value
* is a_0 + a_1*x + a_2*x^2 + ... + a_n*x_n. An IntPoly
* with degree n has coefficent a_n != 0, except that the
* zero polynomial is represented as a polynomial of
* degree 0 and a_0 = 0 in that case.
*/

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

}

Specifications	2
/**
* Return a new IntPoly that is the sum of this and other
* @requires
* @modifies
* @effects
* @return
* @throws
*/
public IntPoly add(IntPoly other)

Specifications	2
/**
* Return a new IntPoly that is the sum of this and other
* @requires other != null
* @modifies none
* @effects none
* @return a new IntPoly representing the sum of this and other
* @throws none
*/
public IntPoly add(IntPoly other)

Representation	invariants
One	of	your	colleagues	is	worried	that	this	creates	a	potential	representation	exposure	problem.	Another	colleague	
says	there’s	no	problem	since	an	IntPoly is	immutable.	Is	there	a	problem?	Give	a	brief	justification	for	your	
answer.	

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

}

Representation	invariants
One	of	your	colleagues	is	worried	that	this	creates	a	potential	representation	exposure	problem.	Another	colleague	
says	there’s	no	problem	since	an	IntPoly is	immutable.	Is	there	a	problem?	Give	a	brief	justification	for	your	
answer.	

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

}

The	return	value	is	a	reference	to	the	same	coefficient	
array	stored	in	the	IntPoly and	the	client	code	could	
alter	those	coefficients.

Representation	invariants
If	there	is	a	representation	exposure	problem,	give	a	new	or	repaired	implementation	of	getCoeffs that	fixes	the	
problem	but	still	returns	the	coefficients	of	the	IntPoly to	the	client.	If	it	saves	time	you	can	give	a	precise	
description	of	the	changes	needed	instead	of	writing	the	detailed	Java	code.	

public class IntPoly {
int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

}

Representation	invariants
If	there	is	a	representation	exposure	problem,	give	a	new	or	repaired	implementation	of	getCoeffs that	fixes	the	
problem	but	still	returns	the	coefficients	of	the	IntPoly to	the	client.	If	it	saves	time	you	can	give	a	precise	
description	of	the	changes	needed	instead	of	writing	the	detailed	Java	code.	

public int[] getCoeffs() {
int[] copyA = new int[a.length];
for (int i = 0; i < copyA.length; i++) {

copyA[i] = a[i]
}
return copyA

}

Representation	invariants
If	there	is	a	representation	exposure	problem,	give	a	new	or	repaired	implementation	of	getCoeffs that	fixes	the	
problem	but	still	returns	the	coefficients	of	the	IntPoly to	the	client.	If	it	saves	time	you	can	give	a	precise	
description	of	the	changes	needed	instead	of	writing	the	detailed	Java	code.	

public int[] getCoeffs() {
int[] copyA = new int[a.length];
for (int i = 0; i < copyA.length; i++) {

copyA[i] = a[i]
}
return copyA

}
1. Make	a	copy
2. Return	the	copy

Representation	invariants
If	there	is	a	representation	exposure	problem,	give	a	new	or	repaired	implementation	of	getCoeffs that	fixes	the	
problem	but	still	returns	the	coefficients	of	the	IntPoly to	the	client.	If	it	saves	time	you	can	give	a	precise	
description	of	the	changes	needed	instead	of	writing	the	detailed	Java	code.	

public int[] getCoeffs() {
int[] copyA = new int[a.length];
for (int i = 0; i < copyA.length; i++) {

copyA[i] = a[i]
}
return copyA

}
1. Make	a	copy
2. Return	the	copy

Alternatively,	we	can	just	use…

Arrays.copyOf(a, a.length)

Reasoning	about	code	2
We	would	like	to	add	a	method	to	this	class	that	evaluates	the	IntPoly at	a	particular	value	x.	In	other	
words,	given	a	value	x,	the	method	valueAt(x) should	return	a0 +	a1x	+	a2x2 +	...	+	anxn,	where	a0
through	an	are	the	coefficients	of	this	IntPoly.	

For	this	problem,	develop	an	implementation	of	this	method	and	prove	that	your	implementation	is	
correct.

(see	starter	code	on	next	slide)

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{_____}
while (k != n) {

{_____}
xk = xk * x;
{_____}
val = val + a[k+1]*xk;
{_____}
k = k + 1;
{_____}

}
{_____}
return val;

}

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{_____}
xk = xk * x;
{_____}
val = val + a[k+1]*xk;
{_____}
k = k + 1;
{_____}

}
{_____}
return val;

}

This	should	come	with	the	code…

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{inv && k != n}
xk = xk * x;
{_____}
val = val + a[k+1]*xk;
{_____}
k = k + 1;
{_____}

}
{_____}
return val;

}

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{inv && k != n}
xk = xk * x;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
val = val + a[k+1]*xk;
{_____}
k = k + 1;
{_____}

}
{_____}
return val;

}

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{inv && k != n}
xk = xk * x;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
val = val + a[k+1]*xk;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
k = k + 1;
{_____}

}
{_____}
return val;

}

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{inv && k != n}
xk = xk * x;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
val = val + a[k+1]*xk;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
k = k + 1;
{inv}

}
{_____}
return val;

}

Reasoning	about	code	2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {

int val = a[0];
int xk = 1;
int k = 0;
int n = a.length-1; // degree of this, n >=0
{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
while (k != n) {

{inv && k != n}
xk = xk * x;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
val = val + a[k+1]*xk;
{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
k = k + 1;
{inv}

}
{inv && k = n ⇒ val = a[0] + a[1]*x + ... + a[n]*x^n}
return val;

}

Equality
Suppose	we	are	defining	a	class	StockItem to	represent	items	stocked	by	an	online	grocery	store.	Here	
is	the	start	of	the	class	definition,	including	the	class	name	and	instance	variables:

public class StockItem {
String name;
String size;
String description;
int quantity;

/* Construct a new StockItem */
public StockItem(...);

}

Equality
A	summer	intern	was	asked	to	implement	an	equals function	for	this	class	that	treats	two	StockItem objects	as	
equal	if	their	name and	size fields	match.	Here’s	the	result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {

return name.equals(other.name) && size.equals(other.size);
}

This	equalsmethod	seems	to	work	sometimes	but	not	always.	Give	an	example	showing	a	situation	when	it	fails.

Equality
A	summer	intern	was	asked	to	implement	an	equals function	for	this	class	that	treats	two	StockItem objects	as	
equal	if	their	name and	size fields	match.	Here’s	the	result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {

return name.equals(other.name) && size.equals(other.size);
}

This	equalsmethod	seems	to	work	sometimes	but	not	always.	Give	an	example	showing	a	situation	when	it	fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Equality
A	summer	intern	was	asked	to	implement	an	equals function	for	this	class	that	treats	two	StockItem objects	as	
equal	if	their	name and	size fields	match.	Here’s	the	result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) { // equals is overloaded, not overridden

return name.equals(other.name) && size.equals(other.size);
}

This	equalsmethod	seems	to	work	sometimes	but	not	always.	Give	an	example	showing	a	situation	when	it	fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Equality
Show	how	you	would	fix	the	equalsmethod	so	it	works	properly	(StockItems are	equal	if	their	
names and	sizes are	equal)

/** return true if the name and size fields match */

Equality
Show	how	you	would	fix	the	equalsmethod	so	it	works	properly	(StockItems are	equal	if	their	
names and	sizes are	equal)

/** return true if the name and size fields match */
@Override
public boolean equals(Object o) {

if (!(o instanceof StockItem)) {
return false;

}
StockItem other = (StockItem) o;
return name.equals(other.name) && size.equals(other.size);

}

hashCode
Which	of	the	following	implementations	of	hashCode() for	the	StockItem class	are	legal:

1. return name.hashCode();

2. return name.hashCode() * 17 + size.hashCode();

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which	of	the	following	implementations	of	hashCode() for	the	StockItem class	are	legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode();

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which	of	the	following	implementations	of	hashCode() for	the	StockItem class	are	legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which	of	the	following	implementations	of	hashCode() for	the	StockItem class	are	legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity;

hashCode
Which	of	the	following	implementations	of	hashCode() for	the	StockItem class	are	legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity; ✘ illegal!

hashCode
Which	of	the	following	implementations	of	hashCode() for	the	StockItem class	are	legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity; ✘ illegal!

The	equalsmethod	does	
not	care	about	quantity

hashCode
Which	implementation	do	you	prefer?

public int hashCode() {
return name.hashCode();

}

public int hashCode() {
return name.hashCode()*17 + size.hashCode();

}

hashCode
Which	implementation	do	you	prefer?

public int hashCode() {
return name.hashCode();

}

public int hashCode() {
return name.hashCode()*17 + size.hashCode();

}

(ii)	will	likely	do	the	best	job	since	it	takes	into	account	both	
the	size	and	name	fields.	(i)	is	also	legal	but	it	gives	the	
same	hashCode for	StockItems that	have	different	sizes	
as	long	as	they	have	the	same	name,	so	it	doesn’t	
differentiate	between	different	StockItems as	well	as	(ii).

