
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2017

Design Patterns, Part 1
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Announcements

• Course evaluation: https://uw.iasystem.org/survey/179905
– we can’t see the results until the course is over

• Last reading quiz is due tonight at 11pm

• Final one week from today
– HW9 first

CSE331 Summer 2017 2

CSE 331 Summer 2017 3

Review

Example: Chat Client GUI

• We now can fully understand the chat client
– uses BorderLayout and a couple of nested panels

• one is a scrolling panel for the message area
– uses two event loops: one for UI, one for networking

ChatClientGUI.java

CSE331 Summer 2017 4

CSE 331 Summer 2017 5

Design Patterns

What is a design pattern?

A standard solution to a common programming problem
– a high-level programming idiom

Often a technique for making code more flexible
– reduces coupling among program components (at some cost)

Shorthand description of a software design
– well-known terminology improves communication
– makes it easier to think of using the technique

A couple familiar examples….

CSE331 Summer 2017 6

Example 1: Observer

Problem: other code needs to be called each time state changes
but we would like the component to be reusable

– can’t just hard-code calls to everything that needs to be called

Solution:
– object maintains a list of observers with a known interface
– calls a method on each observer when state changes

Disadvantages:
– need extra code to add each observer
– potentially wastes memory by maintaining a list of objects that

are known a priori (and are always the same)

CSE331 Summer 2017 7

Example 2: Iteration

Problem: accessing all members of a collection requires performing
a specialized traversal for each data structure

– (makes clients strongly coupled to that data structure)

Solution:
– the implementation performs traversals, does bookkeeping
– results are communicated to clients via a standard interface

(e.g., hasNext(), next())

Disadvantages:
– iteration order fixed by the implementation (not the client)

CSE331 Summer 2017 8

Why (more) design patterns?
Design patterns are intended to capture common solutions / idioms,
name them, make them easy to use to guide design

– they are high-level designs, not specific “coding tricks”

They increase your vocabulary and your intellectual toolset

Do not overuse them
– introducing new abstractions to your program has a cost

• it makes the code more complicated
• it takes time

– don’t fix what isn’t broken
• wait until you have strong evidence that you will run into

the problem that pattern is designed to solve

CSE331 Summer 2017 9

Origin of term

The “Gang of Four” (GoF)
– Gamma, Helm, Johnson, Vlissides

Found they shared a number of “tricks” and
decided to codify them

– a key rule was that nothing could become a pattern unless
they could identify at least three real [different] examples

– for object-oriented programming
• some patterns more general
• others compensate for OOP shortcomings

CSE331 Summer 2017 10

P atterns vs patterns
The phrase pattern has been overused since GoF book

Often used as “[somebody says] X is a good way to write programs”
– and “anti-pattern” as “Y is a bad way to write programs”

These are useful, but GoF-style patterns are more important
– they have richness, history, language-independence,

documentation and (most likely) more staying power

CSE331 Summer 2017 11

An example GoF pattern

For some class C, guarantee that at run-time there is exactly one
(globally visible) instance of C

First, why might you want this?
– what design goals are achieved?

Second, how might you achieve this?
– how to leverage language constructs to enforce the design

A pattern has a recognized name
– this is the Singleton pattern

CSE331 Summer 2017 12

Possible reasons for Singleton

• One RandomNumber generator
• One KeyboardReader, PrinterController, etc…
• One CampusPaths?

• Have an object with fields / methods that are “like public, static
fields / methods” but have a constructor decide their values
– e.g., have main decide which files to give CampusPaths
– but rest of the code can just assume it exists

• Other benefits in certain situations
– could delay expensive constructor until actually needed

CSE331 Summer 2017 13

public class Foo {
private static final Foo instance = new Foo();
// private constructor prevents instantiation outside class
private Foo() { … }
public static Foo getInstance() {

return instance;
}
… instance methods as usual …

}

How: multiple approaches

public class Foo {
private static Foo instance;
// private constructor prevents instantiation outside class
private Foo() { … }
public static synchronized Foo getInstance() {

if (instance == null) {
instance = new Foo();

}
return instance;

}
… instance methods as usual …

}

Eager allocation
of instance

Lazy allocation
of instance

CSE331 Summer 2017 14

GoF patterns: three categories
Creational Patterns are about the object-creation process

Factory Method, Abstract Factory, Singleton, Builder,
Prototype, …

Structural Patterns are about how objects/classes can be
combined

Adapter, Bridge, Composite, Decorator, Façade, Flyweight,
Proxy, …

Behavioral Patterns are about communication among objects
Command, Interpreter, Iterator, Mediator, Observer, State,
Strategy, Chain of Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE331 Summer 2017 15

Creational patterns

Constructors in Java are inflexible
1. Can't return a subtype of the class
2. Can’t reuse an existing object

Factories: patterns for how to create new objects
– Factory method, Factory object / Builder, Prototype

Sharing: patterns for reusing objects
– Singleton, Interning

CSE331 Summer 2017 16

Motivation for factories:
Changing implementations

Supertypes support multiple implementations
interface Matrix { ... }
class SparseMatrix implements Matrix { ... }
class DenseMatrix implements Matrix { ... }

Clients use the supertype (Matrix)
BUT still call SparseMatrix or DenseMatrix constructor

– must decide concrete implementation somewhere
– might want to make the decision in one place

• rather than all over in the code
– factory methods put this decision behind an abstraction

CSE331 Summer 2017 17

Use of factories
class MatrixFactory {

public static Matrix createMatrix(float density) {
return density <= 0.1 ?

new SparseMatrix() : new DenseMatrix();
}

}

Clients call createMatrix instead of a particular constructor

Advantages:
– to switch the implementation, change only one place

CSE331 Summer 2017 18

DateFormat factory methods

DateFormat class encapsulates how to format dates & times
– options: just date, just time, date+time, w/ timezone, etc.
– instead of passing all options to constructor, use factories
– the subtype created by factory call need not be specified

DateFormat df1 = DateFormat.getDateInstance();
DateFormat df2 = DateFormat.getTimeInstance();
DateFormat df3 = DateFormat.getDateInstance(

DateFormat.FULL, Locale.FRANCE);

Date today = new Date();

df1.format(today); // "Jul 4, 1776"
df2.format(today)); // "10:15:00 AM"
df3.format(today)); // "jeudi 4 juillet 1776"

CSE331 Summer 2017 19

Example: Bicycle race

class Race {
public Race() {

Bicycle bike1 = new Bicycle();
Bicycle bike2 = new Bicycle();
… // assume lots of other code here

}
…

}

Suppose there are different types of races
Each race needs its own type of bicycle…

CSE331 Summer 2017 20

Example: Tour de France

class TourDeFrance extends Race {
public TourDeFrance() {

Bicycle bike1 = new RoadBicycle();
Bicycle bike2 = new RoadBicycle();
…

}
…

}

The Tour de France needs a road bike…

CSE331 Summer 2017 21

Example: Cyclocross

class Cyclocross extends Race {
public Cyclocross() {

Bicycle bike1 = new MountainBicycle();
Bicycle bike2 = new MountainBicycle();
…

}
…

}

And the cyclocross needs a mountain bike.

Problem: have to override the constructor in every Race subclass
just to use a different subclass of Bicycle

CSE331 Summer 2017 22

Factory method for Bicycle

class Race {
Bicycle createBicycle() { return new Bicycle(); }
public Race() {

Bicycle bike1 = createBicycle();
Bicycle bike2 = createBicycle();
...

}
}

Solution: use a factory method to avoid choosing which type to create
– let the subclass decide by overriding createBicycle

CSE331 Summer 2017 23

Subclasses override factory method
class TourDeFrance extends Race {

Bicycle createBicycle() {
return new RoadBicycle();

}
public TourDeFrance() { super(); }

}
class Cyclocross extends Race {

Bicycle createBicycle() {
return new MountainBicycle();

}
public Cyclocross() { super(); }

}

• Requires foresight to use factory method in superclass constructor
• Subtyping in the overriding methods!
• Supports other types of reuse (e.g. addBicycle could use it too)

CSE331 Summer 2017 24

A Brief Aside

Did you see what that code just did?
– it called a subclass method from a constructor!
– factory methods should usually be static methods

CSE331 Summer 2017 25

Factory objects

• Let’s move the method into a separate class
– so it’s part of a factory object

• Advantages:
– no longer risks horrifying bugs
– can pass factories around around at runtime

• e.g., let main decide which one to use

CSE331 Summer 2017 26

Factory objects/classes
encapsulate factory method(s)

class BicycleFactory {
Bicycle createBicycle() {
return new Bicycle();

}
}
class RoadBicycleFactory extends BicycleFactory {

Bicycle createBicycle() {
return new RoadBicycle();

}
}
class MountainBicycleFactory extends BicycleFactory {

Bicycle createBicycle() {
return new MountainBicycle();

}
}

These are returning subtypes
CSE331 Summer 2017 27

Using a factory object
class Race {

BicycleFactory bfactory;
public Race(BicycleFactory f) {

bfactory = f;
Bicycle bike1 = bfactory.createBicycle();
Bicycle bike2 = bfactory.createBicycle();
…

}
public Race() { this(new BicycleFactory()); }
…

}

Setting up the flexibility here:
• Factory object stored in a field, set by constructor
• Can take the factory as a constructor-argument
• But an implementation detail (?), so 0-argument constructor too

– Java detail: call another constructor in same class with this

CSE331 Summer 2017 28

The subclasses

class TourDeFrance extends Race {
public TourDeFrance() {

super(new RoadBicycleFactory());
}

}

class Cyclocross extends Race {
public Cyclocross() {

super(new MountainBicycleFactory());
}

}

Voila!

– Just call the superclass constructor with a different factory
– Race class had foresight to delegate “what to do to create a

bicycle” to the factory object, making it more reusable

CSE331 Summer 2017 29

Separate control over bicycles and races

class TourDeFrance extends Race {
public TourDeFrance() {

super(new RoadBicycleFactory()); // or this(…)
}
public TourDeFrance(BicycleFactory f) {

super(f);
}
…

}

By having factory-as-argument option, we can allow arbitrary mixing
by client: new TourDeFrance(new TricycleFactory())

Less useful in this example (?): Swapping in different factory object
whenever you want

Reminder: Not shown here is also using factories for creating races
CSE331 Summer 2017 30

Prototype pattern

• Each object is itself a factory:
– objects contain a clone method that creates a copy

• Useful for objects that are created via a process
– Example: java.awt.geom.AffineTransform
– create by a sequence of calls to translate, scale, and rotate
– easiest to make a similar one by copying and changing

• saves the work of repeating all the common operations
– Example: android.graphics.Paint

• use Paint.set to copy from prototype object

CSE331 Summer 2017 31

Factories: summary

Goal: want more flexible abstractions for what class to instantiate

Factory method
– call a method to create the object
– method can do any computation and return any subtype

Factory object (also Builder)
– Factory has factory methods for some type(s)
– Builder has methods to describe object and then create it

Prototype
– every object is a factory, can create more objects like itself
– call clone to get a new object of same subtype as receiver

Dependency Injection
– put choice of subclass in a file to avoid source-code changes

or even recompiling when decision changes
• (not usually a big problem)

CSE331 Summer 2017 32

