
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Module Design & Style
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

The limits of scaling

Can’t built arbitrarily large physical structures
that work perfectly and indefinitely

– friction, gravity, wear-and-tear

Software has no such problems!
So what prevents arbitrarily large software?

… it’s the difficulty of understanding it!

We make software easier to understand by
breaking it into pieces that can be understood
(and built) separately — using modularity

CSE331 Summer 2016 2

Modules

A module is a relatively general term for a class or a type or any
kind of design unit in software

A module design focuses on what modules are defined, what their
specifications are, how they relate to each other

– does not include the implementations of the modules
– each module respects other modules’ abstraction barriers

CSE331 Summer 2016 3

Ideals of modular software

Decomposable – can be broken down into modules
to reduce complexity and allow teamwork

Composable – “Having divided to conquer, we must
reunite to rule [M. Jackson].”

Understandable – one module can be examined,
reasoned about, & developed in isolation

Continuity – a small change in the requirements
should affect a small number of modules

Isolation – an error in one module should be as
contained as possible

CSE331 Summer 2016 4

Two general design issues

Cohesion – how well parts of a component fit and work together
• form something that is self-contained, independent, and with

a single, well-defined purpose

Coupling – how much dependency there is between components

Goals: decrease coupling, increase cohesion

Applies to modules and smaller units
– each method should do one thing well
– each module should provide a single abstraction

CSE331 Summer 2016 5

Cohesion

The common design objective, separation of concerns,
suggests a module should represent a single concept

– a common kind of “concept” is an ADT

If a module implements more than one abstraction,
consider breaking it into separate modules for each one

CSE331 Summer 2016 6

Coupling
How are modules dependent on one another?

– statically (in the code)? dynamically (at run-time)? others?
– ideally, split design into parts that don't interact much

The more coupled modules are, the more they need to be thought
about all at the same time in order to be understood

An	application

MY
FINAL

PROJECT

A	poor	decomposition
(parts	strongly	coupled)

MY

FINAL PROJECT

A	better	decomposition
(parts	weakly	coupled)

MY

FINECT PROJAL

CSE331 Summer 2016 7

Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark
path, forever will it dominate
your destiny. Consume you it will.

CSE331 Summer 2016 8

“God” classes

god class: hoards most of the data or functionality of a system
– poor cohesion – little thought about why all the elements are

placed together
– reduces coupling but only by collapsing multiple modules

into one (which replaces dependences between modules
with dependences within a module)

A god class is an example of an anti-pattern
– a known bad way of doing things

CSE331 Summer 2016 9

Cohesion again…

Methods should do one thing well:
– compute a value but let client decide what to do with it
– observe or mutate, don’t do both
– don’t print as a side effect of some other operation

Having a method do multiple, not-necessarily-related things
limits future possible uses

“Flag” variables are often a symptom of poor method cohesion
– often mean the method is doing multiple things

CSE331 Summer 2016 10

Method design

Effective Java (EJ) Tip #40: Design method signatures carefully
– avoid long parameter lists
– Perlis: “If you have a procedure with ten parameters, you

probably missed some.”
– especially error-prone if parameters are all the same type
– avoid methods that take lots of Boolean “flag” parameters

Which of these has a bug?
– memset(ptr, size, 0);
– memset(ptr, 0, size);

EJ Tip #41: Use overloading judiciously
Can be useful, but avoid overloading with same number of
parameters, and think about whether methods really are related

CSE331 Summer 2016 11

Constructor design

Constructors should have all the arguments necessary to initialize the
object's state – no more, no less

Object should be completely initialized after constructor is done
(i.e., the rep invariant should hold)

Shouldn't need to call other methods to “finish” initialization
– sometimes tempting but an easy way to cause bugs
– complex initialization can be done using a “builder” pattern

• (more on this in a couple weeks)

CSE331 Summer 2016 12

Field design

A variable should be made into a field if and only if:
– it has a value that retains meaning throughout the object's life
– its state must persist past the end of any one public method

All other variables can and should be local to the methods
– fields should not be used to avoid parameter passing
– not every constructor parameter needs to be a field

Exception to the rule: when we don’t control the interface
– example: Thread.run

CSE331 Summer 2016 13

Good names

EJ Tip #56: Adhere to generally accepted naming conventions
• Class names: generally nouns

– start with a capital letter (unlike fields & variables)
– use CamelCaps not Underscore_Name

• Interface names often –able/-ible adjectives:
Iterable, Comparable, …

• Method names: noun or verb phrases
– verbs+noun for observers: getX, isX, hasX
– verbs for mutators: move, append
– verbs+noun for mutators: setX
– choose affirmative, positive names over negative ones

isSafe not isUnsafe
isEmpty not hasNoElements

CSE331 Summer 2016 14

Bad names

count, flag, status, compute, check, pointer,
names starting with my…

– convey very little useful information!
– (count is okay if meaning is very clear from context)

Describe what is being counted, what the “flag” indicates, etc.
numStudents, courseIsFull, … (fields)
calculatePayroll, validateWebForm, … (methods)

But short names in local contexts are good:
Good: for(i = 0; i < size; i++) items[i]=0;
Bad: for(theLoopCounter = 0;

theLoopCounter < theCollectionSize;
theLoopCounter++)

theCollectionItems[theLoopCounter]=0;

CSE331 Summer 2016 15

Class design ideals

Cohesion and coupling, already discussed

Completeness: every class should present a complete interface
– good advice for public libraries
– for other code, better to avoid unnecessary work

• can leave TODOs for what you want to add later
• or have methods that

throw RuntimeException(“not yet implemented”)

Consistency: in names, param/returns, ordering, and behavior

CSE331 Summer 2016 16

Completeness (for public libraries)

Include important methods to make a class easy to use
Counterexamples:

• A mutable collection with add but no remove
• A tool object with a setHighlighted method to select

it, but no setUnhighlighted method to deselect it
• Date class with no date-arithmetic operations

Also:
– objects that have a natural ordering should implement
Comparable

– objects that might have duplicates should implement
equals (and therefore hashCode)

– most objects should implement toString
• for debugging if nothing else, especially in Eclipse

CSE331 Summer 2016 17

But…

Don’t include everything you can possibly think of
– if you include it, you’re stuck with it forever

(even if almost nobody ever uses it)

Tricky balancing act: include what’s useful, but don’t make things
overly complicated

– you can always add it later if you really need it
– except for public libraries, better to wait if you can

• less code is thrown away when you realize it’s all wrong

“Everything should be made as simple
as possible, but not simpler.”

- Einstein

CSE331 Summer 2016 18

Consistency
A class or interface should have consistent names,
parameters/returns, ordering, and behavior

Use similar naming; accept parameters in the same order
Counterexamples:

setFirst(int index, String value)
setLast(String value, int index)

Date/GregorianCalendar use 0-based months

String methods: equalsIgnoreCase,
compareToIgnoreCase;

but regionMatches(boolean ignoreCase)

String.length(), array.length, collection.size()

CSE331 Summer 2016 19

Open-Closed Principle

Software should be open for extension, but closed for modification
– when features are added to your system, do so by adding

new classes or reusing existing ones in new ways
– if possible, don't make changes by modifying existing ones

• changing existing behavior will likely introduce bugs

Related: code to interfaces, not to classes
Ex: accept a List parameter, not ArrayList or LinkedList
EJ Tip #52: Refer to objects by their interfaces

CSE331 Summer 2016 20

Documenting a class
Keep internal and external documentation separate

External: /** ... */ Javadoc for classes, interfaces, methods
– describes things that clients need to know about the class
– should be specific enough to exclude unacceptable

implementations, but general enough to allow for all correct
implementations

– includes all pre/postconditons, etc.

Internal: // comments inside method bodies
– describes details of how the code is implemented
– information for fellow developer working on this class

• tricky parts of the code
• loop and representation invariants
• important decisions you made

CSE331 Summer 2016 21

Enums make code more readable

Consider use of enums, even with only two values – which of the
following is better?

oven.setTemp(97, true);

oven.setTemp(97, Temperature.CELSIUS);

CSE331 Summer 2016 22

Choosing types – some hints

Numbers: favor int and long for most numeric computations

EJ Tip #48: avoid float / double if exact answers are required
Classic example: money (round-off is bad here)

Strings are often used since much data is read as text,
but keeping numbers as strings is a bad idea.

CSE331 Summer 2016 23

Independence of views

• Confine user interaction to a core set of “view” classes and
isolate these from the classes that maintain the key system data
– see Model-View-Controller (and HW8/9)

• Do not put print statements in your core classes
– this locks your code into a text representation
– makes it less useful if the client wants a GUI, a web app, etc.

• Instead, have your core classes return data that can be
displayed by the view classes
– which of the following is better?

public void printMyself()
public String toString()

CSE331 Summer 2016 24

Method Bodies

• Write method bodies to make them easy to read
– make life easier for your code reviewer
– (make life easier for yourself when you come back later)

• Break code into nicely sized “paragraphs”
– i.e., consecutive lines of code with no blank lines

• Put a comment at the top of the paragraph
– (unless the code is just as readable as the comment)
– use full sentences and correct English

CSE331 Summer 2016 25

Method Bodies Example 1

This code computes “edit distance”.
Even if you know what it does, it’s hard to follow.

for (int i = 0; i < m; i++)

A[i][0] = i;

for (int j = 0; j < n; j++)

A[0][j] = j;

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)

A[i][j] = min(A[i-1][j] + 1, A[i][j-1] + 1,

(s[i-1] == t[j-1]) ? A[i-1][j-1] : infinity);

return A[m][n];

CSE331 Summer 2016 26

Method Bodies Example 1

Break into smaller paragraphs and explain what each does.

// Fill in match costs for empty prefixes.

for (int i = 0; i < m; i++)

A[i][0] = i;

for (int j = 0; j < n; j++)

A[0][j] = j;

// Find the match costs between every pair of prefixes.

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)

A[i][j] = min(A[i-1][j] + 1, A[i][j-1] + 1,

(s[i-1] == t[j-1]) ? A[i-1][j-1] : infinity);

// Return the least cost to match the whole strings.

return A[m][n];
CSE331 Summer 2016 27

Method Bodies Example 1

Break into smaller paragraphs and comment each one.

// Fill in match costs for empty prefixes.

for (int i = 0; i < m; i++)

A[i][0] = i;

for (int j = 0; j < n; j++)

A[0][j] = j;

// Find the match costs between every pair of prefixes.

for (int i = 1; i < m; i++) {

for (int j = 1; j < n; j++) {

// Least cost way to match s[0:i] to t[0:j] is lowest

// of three options: (1) ...

A[i][j] = min(A[i-1][j] + 1, A[i][j-1] + 1,

(s[i-1] == t[j-1]) ? A[i-1][j-1] : infinity);

CSE331 Summer 2016 28

Method Bodies Example 2

This comment is unnecessary (even insulting):

// close the reader

reader.close() 😑

A comment should add something. This adds a little:

// clean up

reader.close()

But really, the code is fine by itself:

reader.close()

CSE331 Summer 2016 29

Method Bodies Example 3

Don’t necessarily need to comment each loop.
This has one comment that describes two for loops.

// Create directed edges between each pair of nodes.

for (Node start : nodes) {

for (Node end : nodes) {

if (!start.equals(end)) {

graph.addEdge(start, end);

}

}

}

This is a case where writing the invariant in detail makes it harder
to understand. (Generally true for “do X for each Y” loops.)

CSE331 Summer 2016 30

Last thoughts (for now)
• Always remember your reader

– Who are they?
• Clients of your code
• Other programmers working with the code

– (including yourself in 3 weeks/months/years)
– What do they need to know?

• How to use it (clients)
• How it works, but more important, why it was done this

way (implementers)
• Keep practicing – mastery takes time and experience
• Keep learning. Keep looking for better ways to do things!

CSE331 Summer 2016 31

