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Reminders

• HW2 is due tonight

• Quiz 2 is posted
– due a week from Friday

• Section tomorrow on Git & HW3
– HW3 will be posted shortly (should be easy)
– you will need a CSE netid (if not, support@cs)
– you should receive an email about your gitlab repo
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Correctness & Termination



Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x 
(or where it would be inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in 
A[n/2+1], ..., A[n-1]. Narrow the search for x on each iteration.

i                   j            n

Loop Invariant: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1]
• insert point for x must lie in A[i], ..., A[j-1]
• A[i], ..., A[j-1] is the part where we don’t know relation to x
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Binary Search Code

i                   j            n

Initialization:
• i = 0 and j = n
• white region is the whole array

Termination condition:
• i = j
• white region is empty
• if x is in the array, it is A[i-1]

– if there are multiple copies of x, this returns the last
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Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] }}
while (i != j) {

// need to bring i and j closer together...
// (e.g., increase i or decrease j)

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}
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Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] }}
while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}
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Aside on Termination

• Most often correctness is harder work than termination
– the latter follows from running time bound

• But also examples where termination is more interesting
– (cases with variable progress toward termination condition) 
– quotient and remainder (Inv: q*y + r == x and r >= 0)
– binary search
– see 16su HW2 for a problem where correctness is trivial and 

the only difficult part is checking that it terminates

• Prove termination in these cases by showing that every iteration 
makes progress toward the termination condition
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Binary Search in JavaScript

• Java has binary search in the standard library
• JavaScript does not

– so you might actually need to implement it

• One new wrinkle: JavaScript numbers are all floats
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Binary Search in JavaScript

var i = 0;

var j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] }}
while (i != j) {

var m = Math.round((i + j) / 2);

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}
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Binary Search in JavaScript

• Proof of correctness works exactly as before
– all of our earlier reasoning still holds
– (we didn’t use any info about m’s value)

• Let’s work through termination though...
– loop terminates when i = j
– to make progress, every iteration should bring i & j closer

• since i <= j, either increase i or decrease j
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Binary Search in JavaScript

var i = 0;

var j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] }}
while (i != j) {

var m = Math.round((i + j) / 2);

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}
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Binary Search in JavaScript

• Need to have i <= m < j or else we loop forever

• Suppose that i + 1 = j
– still not equal, so the loop body will execute

• Then (i + j) / 2 = (i + i + 1) / 2 = (2i + 1) / 2 = i + 0.5
• So Math.round((i + j) / 2) = Math.round(i + 0.5) = i + 1 = j

– we get m = j, not m < j, and go into an infinite loop

• Java code was only correct because of truncating division

• Moral: correctness issues are often subtle
– you need to reason through the code carefully
– don’t forget to check termination when it’s not obvious

CSE 331 Summer 2017 13



CSE 331 Summer 2017 14

Specifications



Goals

We want our code to be:
1. Correct

– everything else is secondary
2. Easy to change

– most code written is changing existing systems
3. Easy to understand

– corollary of previous two
4. Modular

– coping with scale
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Specifications

To prove correctness of our method, we need
• precondition
• postcondition

Without these, we can’t say whether the code is correct
These tell us what it means to be correct

They are (part of) the specification for the method
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Specifications

Specifications are essential to correctness

They are also essential to changeability
• need to know what changes will break code using it

They are also essential to understandability
• need to tell readers what it is supposed to do

They are also essential to modularity…
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A discipline of modularity

• Two ways to view a program:
– the implementer's view (how to build it)
– the client’s view (how to use it)

• It helps to apply these views to program parts:
– while implementing one part, consider yourself a client of 

any other parts it depends on
– try not to look at other parts through implementer's eyes
– helps dampen interactions between parts

• Formalized through the idea of a specification
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A specification is a contract

• A set of requirements agreed to by the user and the 
manufacturer of the product
– describes their expectations of each other

• Facilitates simplicity via two-way isolation
– isolate client from implementation details
– isolate implementer from how the part is used
– discourages implicit, unwritten expectations

• Facilitates change
– reduces the “Medusa effect”: the specification, rather 

than the code, gets “turned to stone” by client 
dependencies
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Isn’t the interface sufficient?

The interface defines the boundary between implementers and clients:

public class MyList extends List<E> {
public E get(int x) { return null; }
public void set(int x, E y){}
public void add(E elem) {}
public void add(int index, E elem){} 
…
public static <T> boolean isSub(List<T> a, List<T> b){

return false;
}

}

Interface provides the syntax and types
But nothing about the behavior and effects

– Provides too little information to clients
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Why not just read code?
static <T> boolean ???(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

Why are you better off with a specification?
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Code is complicated

• Code gives more detail than needed by client

• Understanding or even reading every line of code is an 
excessive burden
– suppose you had to read source code of Java libraries to 

use them
– same applies to developers of different parts of the libraries
– would make it impossible to build million line programs

• Client cares only about what the code does, not how it does it
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Code is ambiguous

• Code seems unambiguous and concrete
– but which details of code's behavior are essential, and which 

are incidental? 

• Code invariably gets rewritten
– client needs to know what they can rely on

• what properties will be maintained over time?
• what properties might be changed by future optimization, 

improved algorithms, or bug fixes?
– implementer needs to know what features the client depends 

on, and which can be changed
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Comments are essential

Most comments convey only an informal, general idea of what that the 
code does:

// This method checks if "part" appears as a 
// subsequence in "src"
static <T> boolean sub(List<T> src, List<T> part){

...
}

Problem:  ambiguity remains
– What if src and part are both empty lists?
– When does the function return true?
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From vague comments to specifications

• Roles of a specification:
– client agrees to rely only on information in the description in 

their use of the part
– implementer of the part promises to support everything in the 

description
• otherwise is at liberty to do whatever they want

• Sadly, much code lacks a specification
– clients often work out what a method/class does in 

ambiguous cases by running it and depending on the results
– leads to bugs and programs with unclear dependencies, 

reducing simplicity and flexibility
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Recall the sublist example
static <T> boolean ???(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}
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Recall the sublist example
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}
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A more careful description of sub
// Check whether “part” appears as a sub-sequence in “src”

needs to be given some caveats (why?):

// * src and part cannot be null
// * If src is empty list, always returns false
// * Results may be unexpected if partial matches
//   can happen right before a real match; e.g.,
//   list (1,2,1,3) will not be identified as a 
//   sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:

// This method scans the “src” list from beginning
// to end, building up a match for “part”, and
// resetting that match every time that...
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A better approach

It’s better to simplify than to describe complexity!

Complicated description suggests poor design
– rewrite sub to be more sensible, and easier to describe

// returns true iff there exist sequences A and B (possibly
// empty) such that src = A + part + B, where + means concat
static <T> boolean sub(List<T> src, List<T> part) {

• Mathematical flavor not always necessary, but often helps avoid 
ambiguity

• “Declarative” style is important: avoids reciting or depending on 
operational/implementation details
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Sneaky fringe benefit of specs #1

• The discipline of writing specifications changes the incentive 
structure of coding
– rewards code that is easy to describe and understand
– punishes code that is hard to describe and understand

• (even if it is shorter or easier to write)

• If you find yourself writing complicated specifications, it is an 
incentive to redesign
– in sub, code that does exactly the right thing may be slightly 

slower than a hack that assumes no partial matches before 
true matches, but cost of forcing client to understand the 
details is too high
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Writing specifications with Javadoc

• Javadoc
– Sometimes can be daunting; get used to using it
– Very important feature of Java (copied by others)

• Javadoc convention for writing specifications
– Method signature
– Text description of method
– @param:  description of what gets passed in
– @return:  description of what gets returned
– @throws:  exceptions that may occur
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Example: Javadoc for String.contains

public boolean contains(CharSequence s)

Returns true if and only if this string contains 
the specified sequence of char values. 

Parameters:

s- the sequence to search for 

Returns:

true if this string contains s, false otherwise 

Throws:

NullPointerException – if s is null

Since:

1.5 
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CSE 331 specifications

• The precondition: constraints that hold before the method is called 
(if not, all bets are off)
– @requires:  spells out any obligations on client

• The postcondition: constraints that hold after the method is called 
(if the precondition held)
– @modifies:  lists objects that may be affected by method; any 

object not listed is guaranteed to be untouched
– @effects:  gives guarantees on final state of modified objects
– @return:  describes return value (Javadoc uses this too)
– @throws:  lists possible exceptions and conditions under 

which they are thrown (Javadoc uses this too)

(Outside of 331 this info is often hidden in the text, @return, and @param’s.)
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Example 1

static <T> int changeFirst(List<T> lst, T oldelt, T newelt)
requires lst, oldelt, and newelt are non-null
modifies lst
effects change the first occurrence of oldelt in lst to newelt

(& makes no other changes to lst)
returns the position of the element in lst that was oldelt and

is now newelt or -1 if not in oldelt

static <T> int change(List<T> lst, 
T oldelt, T newelt) {

int i = 0;
for (T curr : lst) {

if (curr == oldelt) {
lst.set(newelt, i);
return i;

}
i = i + 1;

}
return -1;

}
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Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2) 
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size. 
modifies none
effects none
returns a list of same size where the ith element is 

the sum of the ith elements of lst1 and lst2

static List<Integer> zipSum(List<Integer> lst1
List<Integer> lst2) {

List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lst1.size(); i++) {

res.add(lst1.get(i) + lst2.get(i));
}
return res;

}
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Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2) 
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size. 
modifies lst1
effects ith element of lst2 is added to the ith element of lst1 
returns none

static void listAdd(List<Integer> lst1, 
List<Integer> lst2) {

for(int i = 0; i < lst1.size(); i++) {
lst1.set(i, lst1.get(i) + lst2.get(i));

}
}

36CSE 331 Summer 2017



Example 4 (Watch out for bugs!)

static void uniquify(List<Integer> lst) 
requires ???

???
modifies ???
effects ???
returns ???

static void uniquify(List<Integer> lst) {
for (int i=0; i < lst.size()-1; i++) 

if (lst.get(i) == lst.get(i+1))
lst.remove(i);

}
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Should requires clause be checked?

• If the client calls a method without meeting the precondition, the 
code is free to do anything
– including pass corrupted data back
– it is polite, nevertheless, to fail fast: to provide an immediate 

error, rather than permitting mysterious bad behavior

• Preconditions are common in “helper” methods/classes
– Example: binary search would normally impose a pre-condition 

rather than simply failing if list is not sorted.  Why?

• Rule of thumb: check if cheap to do so
– Example: list has to be non-null à check
– Example: list has to be sorted à skip
– Be judicious if private / only called from your code

• In public libraries, it’s necessary to deal with all possible inputs
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Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if
– every behavior of M is permitted by S
– i.e., for every input allowed by the spec precondition,

M produces an output allowed by the spec postcondition

If M does not satisfy S, either M or S (or both!) could be “wrong”
– “one person’s feature is another person’s bug.”
– usually better to change the program than the spec
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Sneaky fringe benefit of specs #2

• Specification means that client doesn't need to look at 
implementation
– so the code may not even exist yet!

• Write specifications first, make sure system will fit together, and 
then assign separate implementers to different modules
– allows teamwork and parallel development
– also helps with testing (future topic)
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Comparing specifications

• Occasionally, we need to compare different specification:
– comparing potential specifications of a new class
– comparing new version of a specification with old

• recall: most work is making changes to existing code

• For that, we talk about stronger and weaker specifications
– stronger specification provides more information about what 

states can be produced by the implementation
– as a result, it is harder for implementations to satisfy

41CSE 331 Summer 2017



Stronger vs Weaker Specifications

• Definition 1: specification S1 is weaker than S2 iff
– for any implementation M: M satisfies S2 => M satisfies S1
– i.e., S1 is easier to satisfy and S2 is harder to satisfy

• Definition 2: specification S2 is stronger than S1 iff
– postcondition of S2 is stronger than that of S1 on all inputs 

allowed by both
– precondition of S2 is weaker than that of S1

• Two specifications may be incomparable
– neither is weaker/stronger than the other
– some implementations might still satisfy them both
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Stronger vs Weaker Specifications

• A procedure satisfying a stronger specification can be used 
anywhere that a weaker specification is required
- can substitute a procedure satisfying a stronger spec

• A weaker specification:
– is easier to satisfy
– gives more freedom to the implementer

• A stronger specification:
– is harder to satisfy
– gives more guarantees to the caller
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Example 1 (stronger postcondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value) 

return i;
}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value
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Example 2 (weaker precondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value) 

return i;
}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a
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Example 3
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value) 

return i;
}
return -1;

}

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a
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Stronger vs Weaker Summary

• A stronger specification is
– harder to satisfy (more constraints on the implementation)
– easier to use (more guarantees, more predictable, client can 

make more assumptions)

• A weaker specification is
– easier to satisfy (easier to implement, more implementations 

satisfy it)
– harder to use (makes fewer guarantees)
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Strengthening a specification

• Strengthen a specification by:
– Promising more (stronger postcondition):

• effects clause harder to satisfy
• returns clause harder to satisfy
• fewer objects in modifies clause
• more specific exceptions (subclasses)

– Asking less of client (weaker precondition)
• requires clause easier to satisfy

• Weaken a specification by:
– (Opposite of everything above)

48CSE 331 Summer 2017



“Strange” case: @throws

Compare:
S1: 

@throws FooException if x<0
@return x+3

S2:
@return x+3

• Both are stronger than @requires x>=0; @return x+3
• These are incomparable because they promise different, 

incomparable things when x<0
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Which is better?

• Stronger does not always mean better!

• Weaker does not always mean better!

• Strength of specification trades off:
– usefulness to client
– ease of simple, efficient, correct implementation
– promotion of reuse and modularity
– clarity of specification itself

• “It depends”
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More formal stronger/weaker

• A specification is a logical formula
– S2 stronger than S1 if satisfies S2 implies satisfies S1

– from implication all things follows:
• example: S2 stronger if requires is weaker
• example: S2 stronger if returns is stronger

• As in all logic (cf. CSE311), two rigorous ways to check implication
– convert entire specifications to logical formulas and use logic 

rules to check implication
– check every behavior described by stronger also described by 

the other
• CSE311: truth tables
• CSE331: transition relations
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Transition relations

• There is a program state before a method call and after
– all memory, values of all parameters/result, whether 

exception happened, etc.

• A specification “means” a set of pairs of program states
– the legal pre/post-states
– this is the transition relation defined by the spec

• could be infinite
• could be multiple legal outputs for same input

• Stronger specification means the transition relation is a subset

• Note: transition relations often are infinite in size
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