CSE 331 Software Design & Implementation

Kevin Zatloukal Summer 2017 Lecture 2 – Reasoning About Code With Logic (Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Recall from last time...

Is this solution correct?

```
int indexOfMaximum(int[] arr, int n) {
    int maxValue = arr[0];
    int maxIndex = 0;
    for (int i = 1; i < n; i++) {
        if (arr[i] > maxValue) {
            maxValue = arr[i];
            maxIndex = i;
        }
    }
    return maxIndex;
}
```

Reasoning about code

Idea: determine what *facts* are true at each line of the program

- We would like to know:
 - at the end, maxIndex is index of the maximum element
 - at the end, negatives before zeros before positives in **arr**
- Get there by understanding what is true at each line until end
 - then check that those facts that are true at the end include all the things we require

Why do this?

- Essential for building high quality programs
 - allows us to inspect code to check correctness
 - need all three: tools, *inspection*, & testing
 - inspection is even the most effective of the three
- Essential for building high complexity programs
 - allows us to build modular programs
 - each module has assumptions about how it will be used
 - misunderstandings btw module writers will cause bugs
 - assumptions must be clearly stated (and inspected)

Approaches

- We will discuss two approaches
 - forward reasoning: start at the top and work down
 - backward reasoning: start at the end and work up
- Plan:
 - 1. intuitive version (by example)
 - 2. formal definitions & rules

Suppose we initially know (or assume) w >= 1

$$x = 2 * w;$$

$$\mathbf{y} = \mathbf{x} + 2;$$

$$z = y / 2;$$

What can we say at the end about **z**?

Suppose we initially know (or assume) w >= 1

$$x = 2 * w;$$

 $//x \ge 2 * 1 = 2$
 $y = x + 2;$
 $z = y / 2;$

What can we say at the end about **z**?

Suppose we initially know (or assume) w >= 1

$$x = 2 * w;$$

// x >= 2 * 1 = 2
y = x + 2;
// y >= 2 + 2 = 4
z = y / 2;

What can we say at the end about **z**?

Suppose we initially know (or assume) w >= 1

$$x = 2 * w;$$

// x >= 2 * 1 = 2
y = x + 2;
// y >= 2 + 2 = 4
z = y / 2;
// z >= 4 / 2 = 2

What can we say at the end about $z? z \ge 2$

Forward Reasoning

- Forward reasoning:
 - informally, simulates the code (for all inputs at once)
 - formally, determine what follows from initial assumptions
- This is the way most programmers *inspect* their code
- Advantages and disadvantages:
 - intuitive
 - introduces (many) irrelevant facts

Suppose we want to show that $z \ge 1$ (at the end) What needs to be true about w?

$$x = 2 * w;$$

 $y = x + 2;$
 $z = y / 2;$
 $//z \ge 1$

Suppose we want to show that $z \ge 1$ (at the end) What needs to be true about w?

Suppose we want to show that $z \ge 1$ (at the end) What needs to be true about w?

```
x = 2 * w;
// x + 2 >= 2 or equivalently x >= 0
y = x + 2;
// y / 2 >= 1 or equivalently y >= 2
z = y / 2;
// z >= 1
```

Suppose we want to show that $z \ge 1$ (at the end) What needs to be true about w?

// 2 * w >= 0 or equivalently w >= 0
x = 2 * w;
 // x + 2 >= 2 or equivalently x >= 0
y = x + 2;
 // y / 2 >= 1 or equivalently y >= 2
z = y / 2;
 // z >= 1

Backward Reasoning

- Backward reasoning:
 - determines sufficient conditions for a end result
 - e.g., assumptions needed for correctness
- Advantages and disadvantages:
 - less intuitive
 - determines exactly what is necessary to achieve the goal
 - gives you another (powerful) way to reason about code

Our approach

- We will take a **methodical** approach to reasoning about code
 - spell everything out in detail to avoid any misunderstanding
 - (you can move more quickly as you get practice)
- Hoare Logic
 - named after its inventor, Sir Anthony Hoare (inventor of quicksort)
 - considers just assignments, if-statements, and while-loops
 - everything else can be built out of these
 - we will consider just integer-valued variables
 - for Java, we will need floats, strings, objects, etc.
- This lecture: assignments & if-statements; Next lecture: loops

Terminology

- The *program state* is the values of all the (relevant) variables
- An *assertion* is a logical formula referring to the program state (e.g., contents of variables) at a given point
- An assertion *holds* for a program state if the formula is true when those values are substituted for the variables
- An assertion before the code is a *precondition*
 - these represent assumptions about when that code is used
- An assertion after the code is a *postcondition*
 - these represent what we want the code to accomplish

Notation

- Instead of writing assertions as comments, Hoare logic uses {..}
 - since Java code also has {..}, I will use {{...}}
 - $e.g., \{\{ w \ge 1 \}\} x = 2 * w; \{\{ x \ge 2 \}\}$
- Assertions are math not Java
 - you can use the usual math notation
 - (e.g., = instead of == for equals)
 - purpose is communication with other humans (not computers)
 - we will need and, or, not as well
 - can also write use \land (and) \lor (or) etc.
- The Java language also has assertions (**assert** statements)
 - throws an exception if the condition does not evaluate true
 - we will discuss these more later in the course

Hoare Logic

- A Hoare triple is two assertions and one piece of code:
 - $\{\{P\}\} S \{\{Q\}\}$
 - *P* the precondition
 - S the code
 - Q the postcondition
- A Hoare triple {{ P }} S {{ Q }} is called valid if:
 - in any state where P holds, executing S produces a state where Q holds
 - i.e., if *P* is true before *S*, then *Q* must be true after it
 - otherwise the triple is called invalid

Do programmers really do this?

"Warren [Buffet] often talks about these discounted cash flows, but I've never seen him do one." -- Charlie Munger

- Programmers rarely spell it out in this much detail
 - like Buffet, they usually just do it in their heads
- But there are some key exceptions
 - extremely tricky code
 - loops (next lecture)
 - preconditions for methods

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

 $\{\{x \mid = 0\}\} y = x * x; \{\{y > 0\}\}\$

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

 $\{\{x \mid = 0\}\} y = x * x; \{\{y > 0\}\}$

Valid

• y could only be zero if x were zero (which it isn't)

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$\{\{z \mid = 1\}\} y = z * z; \{\{y \mid = z\}\}$$

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$\{\{z \mid = 1\}\} y = z * z; \{\{y \mid = z\}\}$$

Invalid

• counterexample: z = 0

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

 $\{\{x \ge 0\}\} y = 2*x; \{\{y \ge x\}\}$

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$\{ \{ x \ge 0 \} \} y = 2 * x; \{ \{ y \ge x \} \}$$

Invalid

• counterexample: $\mathbf{x} = \mathbf{0}$

Is the following Hoare triple valid or invalid?

Is the following Hoare triple valid or invalid?

Valid

• y is either 3 or 4; in either case, it is less than 5

Is the following Hoare triple valid or invalid?

Is the following Hoare triple valid or invalid?

Valid

Is the following Hoare triple valid or invalid?

```
{{ x = 7 and y = 5 }}
// swap x and y
tmp = x;
x = tmp;
y = x;
{{ x = 5 and y = 7 }}
```

Is the following Hoare triple valid or invalid?

```
{{ x = 7 and y = 5 }}
// swap x and y
tmp = x;
x = tmp;
y = x;
{{ x = 5 and y = 7 }}
```

Invalid

• first two lines leave x unchanged, so we get x = y = 7

The general rules

- Some of these require some thought
 - it would be preferable to do this without (much) thought
 - fortunately, there is a "turn the crank" way of doing these
- For each kind of construct, there is a general rule
 - assignment statements
 - two statements in sequence
 - conditionals
 - loops (next lecture)

Assignment Rule

$\{\{P\}\} x = e; \{\{Q\}\}\$

- Let Q[x=e] be like Q except replace every x with e
 - after "x = e;", Q and Q[x=e] are equivalent
 - but Q[x=e] does not involve x so it holds after "x = e;" if and only if it holds before
 - so we can consider P and Q[x=e] w/out the assignment
- This triple is valid iff: whenever **P** holds, **Q**[**x**=**e**] also holds
 - in logic, we'd say it is valid if P implies Q[x=e]

Assignment Rule Example

$\{\{z > 34\}\} y = z + 1; \{\{y > 1\}\}$

- Q[y=z+1] is z + 1 > 1
 - this is equivalent to z > 0
 - whenever z > 34, we also have z > 0
 - this is valid

Sequence Rule

{{ P }} S1;S2 {{ Q }}

- Triple is valid iff: there is an assertion **R** such that
 - {{ P }} S1 {{ R }} is valid and
 - {{ R }} S2 {{ Q }} is valid
- For now, we will need to guess R
 - we will see shortly that we can find an **R** without guessing

Sequence Rule Example

 $\{\{z \ge 1\}\} y = z+1; w = y*y; \{\{w > y\}\}$

- Choose R to be y > 1
- Show {{ z >= 1 }} y=z+1; {{ y > 1 }}
 - use assignment rule: $z \ge 1$ implies $z+1 \ge 1$?
 - equivalently, $z \ge 1$ implies $z \ge 0$? Valid.
- Show {{ y > 1 }} w=y*y; {{ w > y }}
 - use assignment rule: y > 1 implies y*y > y
 - requires some thought, but valid
- Both of these are triples valid, so the triple at the top is valid

Conditional Rule

{{P}} if (b) {S1} else {S2} {{Q}}

- When S1 executes, we know **P** and **b**
- When S2 executes, we know P and not b
- Triple is valid iff: there are assertions **Q1** and **Q2** such that
 - {{ P and b }} S1 {{ Q1 }} is valid and
 - {{ P and not b }} S2 {{ Q2 }} is valid and
 - Q1 or Q2 implies Q
 - we only know that one holds (which depends on **b**)

Conditional Rule

{{}} if $(x > 7) \{y=x;\}$ else $\{y=20;\}$ {{y > 5}}

- Let Q1 be y > 7 (other choices work too)
 - use assignment rule to show {{ x > 7 }} y=x; {{ y > 7 }}
- Let Q2 be y = 20 (other choices work too)
 - use assignment rule to show {{ x <= 7 }} y=20; {{ y = 20 }}</p>
- Check that y > 7 or y = 20 implies y > 5

Weaker vs Stronger

If "whenever P1 holds, P2 also holds", then:

- P1 is called stronger than P2
- P2 is called weaker than P1

- It is more (or at least as) "difficult" to satisfy P1
 - the program states where P1 holds are a subset of the states where P2 holds
- P1 puts more constraints on program states
- P1 is a stronger set of requirements
- We do not always have P1 stronger than P2 or vice versa!
 - most assertions are incomparable

- $\mathbf{x} = 17$ is stronger than $\mathbf{x} > 0$
- x is prime is neither stronger nor weaker than x is odd
 - these two statements are incomparable
- x is prime and x > 2 is stronger than
 x is odd and x > 2
- Many other examples...

Applications to Method Design

- When writing a method, you decide the preconditions
 - e.g., a parameter may be assumed positive
 - e.g., an array may be assumed to be non-empty
- There are advantages and disadvantages to weaker vs stronger
 - stronger preconditions make the code easier to change
 - there are more allowed implementations
 - weaker preconditions allow more uses
 - there are more allowed calls
 - stronger preconditions may make the code easier to write
 - weaker preconditions are necessary for libraries
- We will discuss this more later on...

Applications to Hoare Logic

- Suppose:
 - {{ P }} S {{ Q }} is valid and
 - some **P1** is *stronger* than **P** and
 - some Q1 is weaker than Q
- Then these are all valid too:
 - {{ P1 }} S {{ Q }}
 - a state where P1 holds is one where P also holds
 - {{ P }} S {{ Q1 }}
 - a state where Q holds is one where Q1 also holds
 - {{ P1 }} S {{ Q1 }}

Example Applications to Hoare Logic

$\{\{x \ge 0\}\} y = x + 1; \{\{y \ge 0\}\}$

- We know this is valid by the assignment rule
- Let P1 be x > 0
 - stronger since $\mathbf{x} \ge \mathbf{0}$ implies $\mathbf{x} \ge \mathbf{0}$
- Let Q1 be y >= 0
 - weaker since $y \ge 0$ implies $y \ge 0$
- Thus, the following is also valid:

$$\{\{x > 0\}\} y = x + 1; \{\{y >= 0\}\}$$

Weakest preconditions

- Suppose we know **Q** and **S**
- There are potentially many P such that {{P}} S {{Q}} is valid
- Would be ideal if there were a *unique* weakest precondition **P**
 - most general assumptions under which s makes g hold
 - get a valid triple for P1 if and only if P1 implies P
- Amazingly, without loops, for any **s** and **Q**, this exists!
 - we denote this by wp(S,Q)
 - can be found by general rules
- Allows you to reason backward *without any guessing*
 - just as you do with forward reasoning

Rules for weakest preconditions

- Example: wp(x = 2*y, x > 4) = 2*y > 4, i.e., y > 2

- i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)

wp(if b S1 else S2, Q) is this logic formula:
(b and wp(S1,Q)) or (!b and wp(S2,Q))

- you need wp(S1,Q) if S1 is executed and wp(S2,Q) if S2 is

- you can often simplify the result considerably

More Examples

- If S is x = y*y and Q is x > 4, then wp(S,Q) is y*y > 4, i.e., |y| > 2
- If S is y = x + 1; z = y 3; and Q is z = 10, then wp(S,Q) ...
 = wp(y = x + 1; z = y - 3, z = 10)
 = wp(y = x + 1, wp(z = y - 3, z = 10))
 = wp(y = x + 1, y-3 = 10)
 = wp(y = x + 1, y = 13)
 = x+1 = 13
 = x = 12

Bigger Example

S is if (y < 5) { x = y*y; } else { x = y+1; }

$$wp(S, x \ge 9)$$

$$= (y < 5 \text{ and } wp(x = y*y, x \ge 9))$$
or $(y \ge 5 \text{ and } wp(x = y+1, x \ge 9))$

$$= (y < 5 \text{ and } y*y \ge 9)$$
or $(y \ge 5 \text{ and } y+1 \ge 9)$

$$= (y <= -3) \text{ or } (y \ge 3 \text{ and } y < 5)$$
or $(y \ge 8)$

If-statements review

{{ **P** }} if B $\{\{ P and B \}\}$ **S1** {{ Q1 }} else $\{\{ P \text{ and not } B\}\}$ **S2** {{ Q2 }} $\{\{ Q1 \text{ or } Q2 \}\}$

Forward reasoning

Backward reasoning $\{\{ (B and wp(S1, Q)) or \} \}$ (not B and wp(S2, Q)) }} if B {{ wp(S1, Q) }} **S1** {{ Q }} else {{ wp(s2, Q) }} **S2** {{ Q }} {{ Q }}

One caveat

- With forward reasoning, there is a problem with assignment:
 - changing a variable can affect other assumptions

- But clearly we do not know w = 7!
- The assertion $\mathbf{w} = \mathbf{x} + \mathbf{y}$ means the *original* values of \mathbf{x} and \mathbf{y}

One Fix

- Use different names for the values at different points
 - common to use subscripts to distinguish these
 - on every assignment, rename references to the old values

{{}}

$$w = x + y;$$

 $\{\{w = x + y\}\}$
 $x = 4;$
 $\{\{w = x_1 + y \text{ and } x = 4\}\}$
 $y = 3;$
 $\{\{w = x_1 + y_1 \text{ and } x = 4 \text{ and } y = 3\}\}$

Useful example: swap

• Consider code for a swapping x and y

```
{{ }}
tmp = x;
{{ tmp = x }}
x = y;
{{ tmp = x<sub>1</sub> and x = y }}
y = tmp;
{{ tmp = x<sub>1</sub> and x = y<sub>1</sub> and y = tmp }}
```

- Post condition implies $\mathbf{x} = \mathbf{y}_1$ and $\mathbf{y} = \mathbf{x}_1$
- I.e., their final values are equal to the original values swapped

Announcements

- Link to notes from last quarter are also on the web
- HW1 posted
 - practice applying these ideas
 - builds up to verifying correctness of short, non-loop code
 - due on Friday by 11pm