
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2017

Lecture 2 – Reasoning About Code With Logic
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Recall from last time...

Is this solution correct?

int indexOfMaximum(int[] arr, int n) {
int maxValue = arr[0];
int maxIndex = 0;
for (int i = 1; i < n; i++) {

if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i;

}
}
return maxIndex;

}

2CSE 331 Summer 2017

Reasoning about code

Idea: determine what facts are true at each line of the program

• We would like to know:
– at the end, maxIndex is index of the maximum element
– at the end, negatives before zeros before positives in arr

• Get there by understanding what is true at each line until end
– then check that those facts that are true at the end include

all the things we require

CSE 331 Spring 2017 3

Why do this?

• Essential for building high quality programs
– allows us to inspect code to check correctness
– need all three: tools, inspection, & testing
– inspection is even the most effective of the three

• Essential for building high complexity programs
– allows us to build modular programs

• each module has assumptions about how it will be used
– misunderstandings btw module writers will cause bugs
– assumptions must be clearly stated (and inspected)

CSE 331 Spring 2017 4

Approaches

• We will discuss two approaches
– forward reasoning: start at the top and work down
– backward reasoning: start at the end and work up

• Plan:
1. intuitive version (by example)
2. formal definitions & rules

CSE 331 Spring 2017 5

Example of Forward Reasoning

Suppose we initially know (or assume) w >= 1

x = 2 * w;

y = x + 2;

z = y / 2;

What can we say at the end about z?

CSE 331 Spring 2017 6

Example of Forward Reasoning

Suppose we initially know (or assume) w >= 1

x = 2 * w;
// x >= 2 * 1 = 2

y = x + 2;

z = y / 2;

What can we say at the end about z?

CSE 331 Spring 2017 7

Example of Forward Reasoning

Suppose we initially know (or assume) w >= 1

x = 2 * w;
// x >= 2 * 1 = 2

y = x + 2;
// y >= 2 + 2 = 4

z = y / 2;

What can we say at the end about z?

CSE 331 Spring 2017 8

Example of Forward Reasoning

Suppose we initially know (or assume) w >= 1

x = 2 * w;
// x >= 2 * 1 = 2

y = x + 2;
// y >= 2 + 2 = 4

z = y / 2;
// z >= 4 / 2 = 2

What can we say at the end about z? z >= 2

CSE 331 Spring 2017 9

Forward Reasoning

• Forward reasoning:
– informally, simulates the code (for all inputs at once)
– formally, determine what follows from initial assumptions

• This is the way most programmers inspect their code

• Advantages and disadvantages:
– intuitive
– introduces (many) irrelevant facts

CSE 331 Spring 2017 10

Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

x = 2 * w;

y = x + 2;

z = y / 2;
// z >= 1

CSE 331 Spring 2017 11

Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

x = 2 * w;

y = x + 2;
// y / 2 >= 1 or equivalently y >= 2

z = y / 2;
// z >= 1

CSE 331 Spring 2017 12

Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

x = 2 * w;
// x + 2 >= 2 or equivalently x >= 0

y = x + 2;
// y / 2 >= 1 or equivalently y >= 2

z = y / 2;
// z >= 1

CSE 331 Spring 2017 13

Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

// 2 * w >= 0 or equivalently w >= 0
x = 2 * w;

// x + 2 >= 2 or equivalently x >= 0
y = x + 2;

// y / 2 >= 1 or equivalently y >= 2
z = y / 2;

// z >= 1

CSE 331 Spring 2017 14

Backward Reasoning

• Backward reasoning:
– determines sufficient conditions for a end result

• e.g., assumptions needed for correctness

• Advantages and disadvantages:
– less intuitive
– determines exactly what is necessary to achieve the goal
– gives you another (powerful) way to reason about code

CSE 331 Spring 2017 15

Our approach

• We will take a methodical approach to reasoning about code
– spell everything out in detail to avoid any misunderstanding
– (you can move more quickly as you get practice)

• Hoare Logic
– named after its inventor, Sir Anthony Hoare (inventor of quicksort)
– considers just assignments, if-statements, and while-loops

• everything else can be built out of these
– we will consider just integer-valued variables

• for Java, we will need floats, strings, objects, etc.

• This lecture: assignments & if-statements; Next lecture: loops

CSE 331 Spring 2017 16

Terminology

• The program state is the values of all the (relevant) variables

• An assertion is a logical formula referring to the program state
(e.g., contents of variables) at a given point

• An assertion holds for a program state if the formula is true
when those values are substituted for the variables

• An assertion before the code is a precondition
– these represent assumptions about when that code is used

• An assertion after the code is a postcondition
– these represent what we want the code to accomplish

CSE 331 Spring 2017 17

Notation
• Instead of writing assertions as comments, Hoare logic uses {..}

– since Java code also has {..}, I will use {{…}}
– e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math not Java
– you can use the usual math notation

• (e.g., = instead of == for equals)
– purpose is communication with other humans (not computers)
– we will need and, or, not as well

• can also write use ⋀ (and) ⋁ (or) etc.

• The Java language also has assertions (assert statements)
– throws an exception if the condition does not evaluate true
– we will discuss these more later in the course

CSE 331 Spring 2017 18

Hoare Logic

• A Hoare triple is two assertions and one piece of code:
{{ P }} S {{ Q }}

– P the precondition
– S the code
– Q the postcondition

• A Hoare triple {{ P }} S {{ Q }} is called valid if:
– in any state where P holds, executing S produces a state

where Q holds
– i.e., if P is true before S, then Q must be true after it
– otherwise the triple is called invalid

CSE 331 Spring 2017 19

Do programmers really do this?

• Programmers rarely spell it out in this much detail
– like Buffet, they usually just do it in their heads

• But there are some key exceptions
– extremely tricky code
– loops (next lecture)
– preconditions for methods

CSE 331 Spring 2017 20

“Warren [Buffet] often talks about these discounted
cash flows, but I’ve never seen him do one.”
-- Charlie Munger

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

CSE 331 Spring 2017 21

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

Valid
• y could only be zero if x were zero (which it isn’t)

CSE 331 Spring 2017 22

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

CSE 331 Spring 2017 23

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

Invalid
• counterexample: z = 0

CSE 331 Spring 2017 24

Example 3

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x >= 0 }} y = 2*x; {{ y > x }}

CSE 331 Spring 2017 25

Example 3

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x >= 0 }} y = 2*x; {{ y > x }}

Invalid
• counterexample: x = 0

CSE 331 Spring 2017 26

Example 4

Is the following Hoare triple valid or invalid?

{{ }}
if (x > 7) {

y = 4;
} else {

y = 3;
}
{{ y < 5 }}

CSE 331 Spring 2017 27

Example 4

Is the following Hoare triple valid or invalid?

{{ }}
if (x > 7) {

y = 4;
} else {

y = 3;
}
{{ y < 5 }}

Valid
• y is either 3 or 4; in either case, it is less than 5

CSE 331 Spring 2017 28

Example 5

Is the following Hoare triple valid or invalid?

{{ }}
x = y;
z = x;
{{ y = z }}

CSE 331 Spring 2017 29

Example 5

Is the following Hoare triple valid or invalid?

{{ }}
x = y;
z = x;
{{ y = z }}

Valid

CSE 331 Spring 2017 30

Example 6

Is the following Hoare triple valid or invalid?

{{ x = 7 and y = 5 }}
// swap x and y
tmp = x;
x = tmp;
y = x;
{{ x = 5 and y = 7 }}

CSE 331 Spring 2017 31

Example 6

Is the following Hoare triple valid or invalid?

{{ x = 7 and y = 5 }}
// swap x and y
tmp = x;
x = tmp;
y = x;
{{ x = 5 and y = 7 }}

Invalid
• first two lines leave x unchanged, so we get x = y = 7

CSE 331 Spring 2017 32

The general rules

• Some of these require some thought
– it would be preferable to do this without (much) thought
– fortunately, there is a “turn the crank” way of doing these

• For each kind of construct, there is a general rule
– assignment statements
– two statements in sequence
– conditionals
– loops (next lecture)

CSE 331 Spring 2017 33

Assignment Rule

{{ P }} x = e; {{ Q }}

• Let Q[x=e] be like Q except replace every x with e
– after “x = e;”, Q and Q[x=e] are equivalent
– but Q[x=e] does not involve x so it holds after “x = e;” if

and only if it holds before
– so we can consider P and Q[x=e] w/out the assignment

• This triple is valid iff: whenever P holds, Q[x=e] also holds
– in logic, we’d say it is valid if P implies Q[x=e]

CSE 331 Spring 2017 34

Assignment Rule Example

{{ z > 34 }} y = z + 1; {{ y > 1 }}

• Q[y=z+1] is z + 1 > 1
– this is equivalent to z > 0
– whenever z > 34, we also have z > 0
– this is valid

CSE 331 Spring 2017 35

Sequence Rule

CSE 331 Spring 2017 36

{{ P }} S1;S2 {{ Q }}

• Triple is valid iff: there is an assertion R such that
– {{ P }} S1 {{ R }} is valid and
– {{ R }} S2 {{ Q }} is valid

• For now, we will need to guess R
– we will see shortly that we can find an R without guessing

Sequence Rule Example

CSE 331 Spring 2017 37

{{ z >= 1 }} y = z+1; w = y*y; {{ w > y }}

• Choose R to be y > 1
• Show {{ z >= 1 }} y=z+1; {{ y > 1 }}

– use assignment rule: z >= 1 implies z+1 > 1?
– equivalently, z >= 1 implies z > 0? Valid.

• Show {{ y > 1 }} w=y*y; {{ w > y }}
– use assignment rule: y > 1 implies y*y > y
– requires some thought, but valid

• Both of these are triples valid, so the triple at the top is valid

Conditional Rule

CSE 331 Spring 2017 38

{{ P }} if (b) {S1} else {S2} {{ Q }}

• When S1 executes, we know P and b
• When S2 executes, we know P and not b

• Triple is valid iff: there are assertions Q1 and Q2 such that
– {{ P and b }} S1 {{ Q1 }} is valid and
– {{ P and not b }} S2 {{ Q2 }} is valid and
– Q1 or Q2 implies Q

• we only know that one holds (which depends on b)

Conditional Rule

CSE 331 Spring 2017 39

{{ }} if (x > 7) {y=x;} else {y=20;} {{ y > 5 }}

• Let Q1 be y > 7 (other choices work too)
• use assignment rule to show {{ x > 7 }} y=x; {{ y > 7 }}

• Let Q2 be y = 20 (other choices work too)
– use assignment rule to show {{ x <= 7 }} y=20; {{ y = 20 }}

• Check that y > 7 or y = 20 implies y > 5

Weaker vs Stronger

If “whenever P1 holds, P2 also holds”, then:
– P1 is called stronger than P2
– P2 is called weaker than P1

• It is more (or at least as) “difficult” to satisfy P1
– the program states where P1 holds are a subset of the

states where P2 holds
• P1 puts more constraints on program states
• P1 is a stronger set of requirements

• We do not always have P1 stronger than P2 or vice versa!
– most assertions are incomparable

CSE 331 Spring 2017 40

P1 P2

Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd
– these two statements are incomparable

• x is prime and x > 2 is stronger than
x is odd and x > 2

• Many other examples...

CSE 331 Spring 2017 41

Applications to Method Design

• When writing a method, you decide the preconditions
– e.g., a parameter may be assumed positive
– e.g., an array may be assumed to be non-empty

• There are advantages and disadvantages to weaker vs stronger
– stronger preconditions make the code easier to change

• there are more allowed implementations
– weaker preconditions allow more uses

• there are more allowed calls
– stronger preconditions may make the code easier to write
– weaker preconditions are necessary for libraries

• We will discuss this more later on…
CSE 331 Spring 2017 42

Applications to Hoare Logic

• Suppose:
– {{ P }} S {{ Q }} is valid and
– some P1 is stronger than P and
– some Q1 is weaker than Q

• Then these are all valid too:
– {{ P1 }} S {{ Q }}

• a state where P1 holds is one where P also holds
– {{ P }} S {{ Q1 }}

• a state where Q holds is one where Q1 also holds
– {{ P1 }} S {{ Q1 }}

CSE 331 Spring 2017 43

Example Applications to Hoare Logic

{{ x >= 0 }} y = x + 1; {{ y > 0 }}

• We know this is valid by the assignment rule

• Let P1 be x > 0
– stronger since x >= 0 implies x > 0

• Let Q1 be y >= 0
– weaker since y >= 0 implies y > 0

• Thus, the following is also valid:

{{ x > 0 }} y = x + 1; {{ y >= 0 }}

CSE 331 Spring 2017 44

Weakest preconditions

• Suppose we know Q and S
• There are potentially many P such that {{P}} S {{Q}} is valid

• Would be ideal if there were a unique weakest precondition P
– most general assumptions under which S makes Q hold
– get a valid triple for P1 if and only if P1 implies P

• Amazingly, without loops, for any S and Q, this exists!
– we denote this by wp(S,Q)
– can be found by general rules

• Allows you to reason backward without any guessing
– just as you do with forward reasoning

CSE 331 Spring 2017 45

Rules for weakest preconditions

• wp(x = e, Q) is Q[x=e]
– Example: wp(x = 2*y, x > 4) = 2*y > 4, i.e., y > 2

• wp(S1;S2, Q) is wp(S1, wp(S2,Q))
– i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
– Example: wp(y = x+1, wp(z = y+1, z > 2)) =

wp(y = x+1, y+1 > 2) =
(x+1)+1 > 2 or equivalently x > 0

• wp(if b S1 else S2, Q) is this logic formula:
(b and wp(S1,Q)) or (!b and wp(S2,Q))

– you need wp(S1,Q) if S1 is executed and wp(S2,Q) if S2 is
– you can often simplify the result considerably

CSE 331 Spring 2017 46

More Examples

• If S is x = y*y and Q is x > 4,
then wp(S,Q) is y*y > 4, i.e., |y| > 2

• If S is y = x + 1; z = y – 3; and Q is z = 10,
then wp(S,Q) …
= wp(y = x + 1; z = y – 3, z = 10)
= wp(y = x + 1, wp(z = y – 3, z = 10))
= wp(y = x + 1, y-3 = 10)
= wp(y = x + 1, y = 13)
= x+1 = 13
= x = 12

CSE 331 Spring 2017 47

Bigger Example

CSE 331 Spring 2017 48

-4 -3 -2 -1 0 721 4 653 8 9

S is if (y < 5) { x = y*y; } else { x = y+1; }

wp(S, x >= 9)
= (y < 5 and wp(x = y*y, x >= 9))
or (y >= 5 and wp(x = y+1, x >= 9))

= (y < 5 and y*y >= 9)
or (y >= 5 and y+1 >= 9)

= (y <= -3) or (y >= 3 and y < 5)
or (y >= 8)

If-statements review

CSE 331 Spring 2017 49

Forward reasoning

{{ P }}
if B

{{ P and B }}
S1
{{ Q1 }}

else
{{ P and not B }}
S2
{{ Q2 }}

{{ Q1 or Q2 }}

Backward reasoning

{{ (B and wp(S1, Q)) or
(not B and wp(S2, Q)) }}

if B
{{ wp(S1, Q) }}
S1
{{ Q }}

else
{{ wp(S2, Q) }}
S2
{{ Q }}

{{ Q }}

One caveat

• With forward reasoning, there is a problem with assignment:
– changing a variable can affect other assumptions

{{ }}
w = x + y;
{{ w = x + y }}
x = 4;
{{ w = x + y and x = 4 }}
y = 3;
{{ w = x + y and x = 4 and y = 3 }}

• But clearly we do not know w = 7!
• The assertion w = x + y means the original values of x and y

CSE 331 Spring 2017 50

One Fix

• Use different names for the values at different points
– common to use subscripts to distinguish these
– on every assignment, rename references to the old values

{{ }}
w = x + y;
{{ w = x + y }}
x = 4;
{{ w = x1 + y and x = 4 }}
y = 3;
{{ w = x1 + y1 and x = 4 and y = 3 }}

CSE 331 Spring 2017 51

Useful example: swap

• Consider code for a swapping x and y

{{ }}
tmp = x;
{{ tmp = x }}
x = y;
{{ tmp = x1 and x = y }}
y = tmp;
{{ tmp = x1 and x = y1 and y = tmp }}

• Post condition implies x = y1 and y = x1
• I.e., their final values are equal to the original values swapped

CSE 331 Spring 2017 52

Announcements

• Link to notes from last quarter are also on the web

• HW1 posted
– practice applying these ideas
– builds up to verifying correctness of short, non-loop code
– due on Friday by 11pm

CSE 331 Spring 2017 53

