
 CSE 331 Summer 2017 Midterm Exam

 Page 1 of 12

Name __

The exam has 5 regular problems and 1 bonus problem. Only the regular
problems will count toward your midterm score. The bonus problem will be
included in your bonus score, which may be used to break ties if you end up on
the border between different grades.

The exam is closed book and closed electronics. One page of notes is allowed.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 70

1. ______ / 14

2. ______ / 16

3. ______ / 16

4. ______ / 14

5. ______ / 10

Bonus: ______ / 10

 CSE 331 Summer 2017 Midterm Exam

 Page 2 of 12

Problem 1 (Concepts). Answer each of the following questions. For parts c – f, give a
short answer (1 or 2 sentences) for each question.

a. A failure encountered by users is usually most expensive to fix when the cause is
(circle one)

a defect in the implementation

a defect in the design

a defect in the requirements

The next two questions refer to the following method:

// @requires x > 0
// @returns the x-th Fibonacci number
public static Number fibonacciNumber(Integer x) { … }

b. Which of the following would strengthen the specification of fibonacciNumber

(circle all that apply)?

change @requires to x >= 0

change the type of x to Number

change the type of the return value to Integer

change the type of the return value to Object

c. Give an example of client code that would be broken by making one of the
described changes above.

 CSE 331 Summer 2017 Midterm Exam

 Page 3 of 12

Kevin has written the following class:

// Represents a queue of integers.
public class IntQueue {

 // AF(this) = values (first item is first out etc.)
 private List<Integer> values; // RI: values != null

 public IntQueue() {
 this.values = new LinkedList<Integer>();
 }

 // Returns list of the values in the queue right now.
 public List<Integer> getValues() { return values; }

 ...
}

Now suppose that Bob writes the following code, using Kevin’s class:

IntQueue Q = new IntQueue();
...

// I checked and getValues always returns a LinkedList,
// so it’s safe to use LinkedList.getFirst here!
System.out.println(
 ((LinkedList<Integer>) Q.getValues()).getFirst());

Later, Kevin changes his IntQueue class to use an ArrayList instead of a
LinkedList. Although all his tests pass, he discovers the program now crashes,
with a stack trace indicating an exception on the final line of Bob’s code.

d. Although Bob will soon be fired, this situation is partly Kevin’s fault. What was his
mistake, and what defensive programming technique would have prevented it?

 CSE 331 Summer 2017 Midterm Exam

 Page 4 of 12

Suppose that Kevin implements equals and hashCode as follows:

public boolean equals(Object o) { return o == this; }

public int hashCode() {
 // Want hash codes to be pretty random for good
 // performance in hash tables, so this will be perfect!
 return (int)(100000 * Math.random());
}

e. What required property of the hashCode contract does this violate? (If you don’t
remember the name, just describe the property.)

Kevin’s friend took CSE 331 and showed him IntQueue2 from HW5, which stores
the elements in a Java array. He loves it and decides to use it himself:

// AF(this) = [entries[front], entries[(front+1) % n], ...,
// entries[(front+size-1) % n]] with n = entries.length
int[] entries; // RI: not null, all unused entries zeroed
int front, size; // RI: non-negative, ...

In addition, he decides to change equals so that it checks if the two queues have
the same abstract values (i.e., they would produce the same elements in the same
order) instead of reference equality. Then, he re-implements hashCode as follows:

public int hashCode() {
 int c = 0;
 for (int i = 0; i < entries.length; i++)
 c = 3 * c + entries[i]; // unused entry = 0 so ignored
 return c;
}

f. What required property of the hashCode contract does this violate? (If you don’t
remember the name, just describe the property.)

 CSE 331 Summer 2017 Midterm Exam

 Page 5 of 12

The next few problems refer to the following TextBuffer class, which is partially
implemented for you:

/**
 * Represents a sequence of characters with a movable "cursor" at some
 * position in the sequence. The cursor can be moved anywhere in the sequence,
 * but only the characters at the cursor position can be changed, either by
 * deleting or inserting new ones.
 *
 * A typical buffer looks like [abcd^efg], where the sequence contains the same
 * characters as the string "abcdefg" and the cursor is just before the "e".
 * Calling removeChar() at that point will remove 'e', leaving the buffer in
 * the state [abcd^fg], with the cursor just before the 'f'. Calling
 * insertChar('e') after that will insert an 'e' before the 'f', putting the
 * buffer back into its original state [abcd^efg].
 */
public class TextBuffer {

 // AF(this) = sequence of characters
 // prefixChars[0..prefixLen-1] + reverse(suffixChars[0..suffixLen-1])
 // with cursor at index cursorPos
 // RI: prefixChars != null and suffixChars != null and
 // 0 <= prefixLen <= prefixChars.length and
 // 0 <= suffixLen <= suffixChars.length and
 // 0 <= cursorPos <= prefixLen + suffixLen
 private char[] prefixChars, suffixChars;
 private int prefixLen = 0, suffixLen = 0;
 private int cursorPos = 0;

 /** Creates an empty sequence with the cursor at the beginning. */
 public TextBuffer() {
 this.prefixChars = new char[4]; // make room for a few chars
 this.suffixChars = new char[0];
 }

 /** @returns the length of the sequence */
 public int getLength() { return prefixLen + suffixLen; }

 /** @returns the sequence of characters as a string */
 public String getText() {
 StringBuilder buf = new StringBuilder();
 buf.append(prefixChars, 0, prefixLen);
 for (int i = suffixLen-1; i >= 0; i--)
 buf.append(suffixChars[i]);
 return buf.toString();
 }

 /** @returns the index where the cursor is currently at */
 public int getCursorPos() { return cursorPos; }

 @Override
 public String toString() {
 StringBuilder buf = new StringBuilder("[");
 buf.append(getText().substring(0, cursorPos));
 buf.append("^");
 buf.append(getText().substring(cursorPos));
 buf.append("]");
 return buf.toString();
 }

 CSE 331 Summer 2017 Midterm Exam

 Page 6 of 12

(this page left intentionally blank)

 CSE 331 Summer 2017 Midterm Exam

 Page 7 of 12

Problem 2 (ADTs).

a. Give a specification and implementation for a method moveCursorForward()
that will move the cursor one character closer to the end. (Note that there is more
than one reasonable answer to this question.)

 CSE 331 Summer 2017 Midterm Exam

 Page 8 of 12

a. Give a specification and implementation for the method removeChar() that
removes the character under the cursor. (Note that there is more than one
reasonable answer to this question.)

You may assume the existence of a helper method moveSplitTo(int pos)
that rearranges prefixChars and suffixChars so that exactly pos
characters are in prefixChars with the rest in suffixChars.

 CSE 331 Summer 2017 Midterm Exam

 Page 9 of 12

Problem 3 (Testing).

a. Describe one test for moveCursorForward(). Give the initial/final states using
the notation from the overview of TextBuffer (and returned by toString).

In state ___,

calling moveCursorForward()

should produce state __________________________________.

Does this test give 100% statement coverage? Yes No

Does this test give 100% branch coverage? Yes No

Does this test give 100% path coverage? Yes No

b. Describe two tests for removeChar() using the format above. If possible, you
should test two distinct behaviors of the method.

a. In state ___,

calling removeChar()

should produce state __________________________________.

b. In state ___,

calling removeChar()

should ___.

Do these tests give 100% statement coverage? Yes No

Do these tests give 100% branch coverage? Yes No

Do these tests give 100% path coverage? Yes No

c. Are these specification or implementation tests?

 CSE 331 Summer 2017 Midterm Exam

 Page 10 of 12

Problem 4 (Reasoning I). Give a complete proof of correctness for the following
method that evaluates a polynomial at a given point (similar to RatPoly.eval in HW4):

// @requires coeffs != null
// @returns the value of the polynomial with the given
// coefficients at the point x. The value coeffs[i] is
// the coefficient of x^i. For example, if coeffs is
// [2, 3, 1], it represents x^2 + 3x + 2, evaluating it
// at x = 5 gives 5^2 + 3*5 + 2 = 42.
public static double eval(double[] coeffs, double x) {

 double val = 0;

 int i = coeffs.length;

 {{ ___ }}

 {{ Inv: val = coeffs[i] + coeffs[i+1] x + … + coeffs[n-1] x^{n-1-i},
 where n = coeffs.length }}
 while (i != 0) {

 {{ ___ }}
 i--;

 {{ ___ }}
 val = x * val + coeffs[i];

 {{ ___ }}
 }

 {{ val = coeffs[0] + coeffs[1] x + … + coeffs[n-1] x^{n-1} }}
 return val;
}

 CSE 331 Summer 2017 Midterm Exam

 Page 11 of 12

Problem 5 (Reasoning II). The following method, from the first version of HW2, takes
an array A as input and is supposed to reverse its first n elements. As many students
noticed, it contains a bug, which we fixed by changing the loop condition to “i+1 < j”.

(In the assertions below, A[i] refers to the current value in A[i], while A[i]1 (subscript “1”)
refers to the original value in A[i] when the method was called.)

{{ 0 < n <= A.length }}
public void reverse(int[] A, int n) {
 int i = -1;
 int j = n;

 {{ Inv: A[0] = A[n-1]1, .., A[i] = A[n-1-i]1 and A[j] = A[n-1-j]1, …, A[n-1] = A[0]1
 and A[i+1], … A[j-1] are unchanged and j = n-1-i }}
 while (i < j) {
 i = i + 1;
 j = j – 1;
 swap A[i], A[j];
 }

 {{ A[0] = A[n-1]1, …, A[n-1] = A[0]1 }}
}

Since the code is incorrect (without the fix), it’s proof of correctness does not go through.
Explain precisely why the proof of correctness fails. (That is, when going through the
proof of correctness as in the previous question, where do you run into a problem?)

Explain why that part of the proof now goes through when the loop condition is changed
to instead say “i+1 < j”.

 CSE 331 Summer 2017 Midterm Exam

 Page 12 of 12

Bonus Problem (Reasoning III). The following code merges

// @requires A and B are sorted, n < A.length, m < B.length
// and C.length >= n+m
// @modifies C
// @effects C stores A[0..n-1] + B[0..m-1] and is sorted
public void merge(int[] A, int n, int[] B, int m, int[] C){
 int i = 0, j = 0, k = 0;

 {{ Inv: C[0..k-1] holds A[0..i-1] + B[0..j-1] and is sorted, A & B are sorted }}
 while (i < n && j < m) {
 if (A[i] < B[j])
 C[k++] = A[i++]
 else
 C[k++] = B[j++]
 }

 {{ Inv: C[0..k-1] holds A[0..i-1] + B[0..j-1] and is sorted, A & B are sorted }}
 while (i != n)
 C[k++] = A[i++]

 {{ Inv: C[0..k-1] holds A[0..n-1] + B[0..j-1] and is sorted, A & B are sorted }}
 while (j != m)
 C[k++] = B[j++]

 {{ C[0..k-1] holds A[0..n-1] + B[0..m-1] and is sorted, A & B are sorted }}
}

In this case, the code is correct. However, once again the proof of correctness does not
go through. Where does the proof of correctness fail?

To make the proof work, the three loop invariants must be strengthened. What condition
can you add to the first loop invariant to make the correctness proof work up to the end
of the first loop? (You’d need similar changes to the other loops also.)

