
 CSE 331 Summer 2017 Final Exam

 Page 1 of 11

Name ______________Solution______________________

The exam is closed book and closed electronics. One page of notes is allowed.

The exam has 6 regular problems and 1 bonus problem. Only the regular
problems will count toward your final exam score. The bonus problem will be
included in your bonus score, which may be used to break ties if you end up on
the border between different grades.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 78

1. ______ / 17

2. ______ / 10

3. ______ / 14

4. ______ / 14

5. ______ / 6

6. ______ / 12

7. ______ / 16

 CSE 331 Summer 2017 Final Exam

 Page 2 of 11

Problem 1 (Subtypes)

1. Which of the following is NOT an example of a way that a super- and sub-
class can be tightly coupled? Circle one.

Subclass may depend on the pattern of self-calls in the superclass.

Subclass may depend on the order of self-calls in the superclass.

Subclass may depend on the names of private fields in the superclass.

Subclass methods could be called when rep invariant does not hold.

2. Call the superclass from the question above A and the subclass B.

Which of the following is a problem with B as a subclass but would no
longer be if B were instead written with composition? Circle all that apply.

B may depend on the pattern of self-calls in A.

B may depend on the order of self-calls in A.

B may depend on the names of private fields in A.

A’s methods could be called when its rep invariant does not hold.

B’s methods could be called when its rep invariant does not hold.

3. Which of the following would cause a subclass to fail to be a subtype?

(Assume each change was legal in Java.) Circle all that apply.

Subclass adds a new method.

Subclass removes a method.

Subclass changes a return type from Number to Integer.

Subclass changes a return type from Integer to Number.

Subclass strengthens the precondition of a method.

Subclass strengthens the postcondition of a method.

 CSE 331 Summer 2017 Final Exam

 Page 3 of 11

4. Which Java keyword disallows a subclass from overriding a method?

 final

5. Which of the following does Josh Bloch suggest may be necessary when
designing for inheritance? Circle all that apply.

Declare all private fields final.

Document self-calls of override-able methods

Eliminate calls of override-able methods from the constructor.

Provide access to the internal workings of the class by making private
methods or fields protected instead.

 CSE 331 Summer 2017 Final Exam

 Page 4 of 11

Problem 2 (Subtypes II)

Consider the following Java class:

/** Represents a mutable sequence of integers. */
public class IntList {
 // RI: list is not null, no list entries are null
 // AF(this) = vals
 private List<Integer> vals;

 // If non-null, stores the current value of toString.
 // This makes most calls to toString take O(1) time.
 private String cachedStr;

 /** Creates an empty list. */
 public IntList() {
 this.vals = new ArrayList<>();
 this.cachedStr = toString();
 }

 /** Adds the given integer to the list. */
 public void add(int val) {
 vals.add(val);

 cachedStr = null;
 cachedStr = toString();
 }

 /** Returns a string description of the values. */
 public String toString() {
 if (cachedStr != null)
 return cachedStr;
 return vals.toString();
 }
}

(continued on next page…)

 CSE 331 Summer 2017 Final Exam

 Page 5 of 11

Now, consider the following subclass of IntList above:

/** Stores a mutable list of integers and their product. */
public class IntListWithProduct extends IntList {
 // RI: prod is the product of all the values (or 1 if empty)
 private int prod;

 /** Creates an empty list. */
 public IntListWithProduct() {
 this.prod = 1;
 }

 @Override public void add(int val) {
 super.add(val);
 prod *= val;
 }

 // Ex: for [2,3] this will return “[2, 3] (product is 6)”.
 @Override public String toString() {
 return String.format(“%s (product is %d)”,
 super.toString(), prod);
 }
}

1. Explain how a method of IntListWithProduct can be called when the
representation invariant does not hold.

The superclass constructor calls toString(), which is overridden. That
occurs before the line in the constructor that sets prod to 1.

2. What will cachedStr contain after the self-call of toString in the IntList
constructor? (Note that int variables are initially zero before assigned.)

 [] (product is 0)

3. What will new IntListWithProduct().toString() actually return?

 [] (product is 0) (product is 1)

4. Would you say IntList was designed to support inheritance?

 No, I would not.

 CSE 331 Summer 2017 Final Exam

 Page 6 of 11

Problem 3 (Generics)

1. Any class that uses (other) generic classes should usually be generic.

 True False

2. Any class that implements a container ADT should usually be generic.

 True False

3. Suppose that T is a generic type parameter. For which of the following
types can you perform an instanceof check? Circle all that apply.

 T

 T[]

 List<T>

 List<?>

4. Which of the following is most useful for working around the lack of co-

and contra-variant subtyping in generic parameters?

 arrays ArrayList

 generic methods generic type erasure

Let S be a class and T a subtype. Suppose that our method wants to take a
sequence of S’s as an argument and use it in a contravariant1 manner.

5. Which of these would be legal in Java? Circle all that apply.

Declare argument as S[] and pass in T[]

Declare argument as List<S> and pass in List<T>

6. Which of these would always work correctly (i.e., run without error) in

Java? (Assume each was allowed / legal in Java.) Circle all that apply.

Declare argument as S[] and pass in T[]

Declare argument as List<S> and pass in List<T>

1 Recall: Foo<X> is covariant in X if Foo<X> is a subtype of Foo<Y> when X is a subtype of Y
and contravariant if Foo<X> is a supertype of Foo<Y> as X is a subtype of Y.

 CSE 331 Summer 2017 Final Exam

 Page 7 of 11

Problem 4 (Design Patterns)

1. Which of the following are advantages of static factory methods over
constructors? Circle all that apply.

Has a name that can provide useful information about what it creates

Can return an existing object instead of creating a new one

Can have two with the same argument list

Can return a subtype

2. Which of the following are examples of wrappers? Circle all that apply.

 Adapter Decorator

 Proxy Visitor

3. Traversing an abstract syntax tree (AST) using the procedural approach
(i.e., with code grouped together by operation rather than node type)
demonstrates which of the following design patterns? Circle all that apply.

 Adapter Composite

 Interpreter Visitor

4. Give an example of a design pattern used in the standard Java library for

creating instances of String. Name both the class / method of the Java
library and the pattern it represents.

a. StringBuilder uses the Builder pattern.

b. String.format is a factory method.

c. String.intern uses the interning pattern

 CSE 331 Summer 2017 Final Exam

 Page 8 of 11

Problem 5 (Style)

Kevin is writing a Matrix class. He starts writing his class as follows:

public class Matrix {

 /** Creates a matrix from a list of values given in
 * row-major order. */
 public Matrix(double[] vals, int rowSize) { ... }

 /** Creates a matrix from a list of values given in
 * column-major order. */
 public Matrix(double[] vals, int colSize) { ... }

 ...
}

Why does this fail to compile?

 There are two methods definitions with the same signature.

To fix it, Kevin changes the code to the following:

public class Matrix {

 /** Creates a matrix from a list of values given in
 * row-major order. */
 public Matrix(double[] vals, int rowSize) { ... }

 /** Creates a matrix from a list of values given in
 * column-major order. */
 public Matrix(int colSize, double[] vals) { ... }

 ...
}

Why, even though it now compiles, does it demonstrate bad style?

It would be easy for clients to confuse the two since they differ only in the
order of the arguments.

 CSE 331 Summer 2017 Final Exam

 Page 9 of 11

Problem 6 (Debugging & Testing)

Consider the following class:

/** Represents a list of doubles. */
public class DoubleList {

 // RI: vals != null and contains no nulls
 // AF(this) = [vals[0], vals[1], ..., vals[vals.length-1]]
 private Double[] vals;

 /** Creates an empty list */
 public DoubleList() {
 this.vals = new Double[0];
 }

 /** Adds the given value to the end of the list. */
 public void add(double val) {
 // Make a new array containing vals plus the new value.
 Double[] newVals = new Double[vals.length + 1];
 for (int i = 0; i < vals.length; i++)
 newVals[i] = vals[i];
 newVals[vals.length] = val;

 this.vals = newVals;
 }

 /** Return the list as an array. */
 public Double[] asArray() {
 return vals;
 }

 @Override public String toString() {
 StringBuilder buf = new StringBuilder(“[“);
 for (int i = 0; i < vals.length; i++) {
 if (i > 0)
 buf.append(“, “);
 buf.append(Double.toString(vals[i]));
 }
 buf.append(“]”);
 return buf.toString();
 }
}

 CSE 331 Summer 2017 Final Exam

 Page 10 of 11

1. Suppose that the code is crashing with a NullPointerException on the
line that reads

buf.append(Double.toString(vals[i]));

With the code above, what object must be null if that exception occurs?

 vals[i] must be null (buf is clearly not)

2. Where is the defect that made that object null? Circle one.

DoubleList() client code

DoubleList.add DoubleList.toString

3. Most likely, how hard will it be to find this defect versus an average bug?

harder than average easier than average

4. What should the author of DoubleList have done differently in this class to
avoid this failure?

He should make a copy of vals in asArray.

5. Write the method body for a JUnit test that would demonstrate the crash
discussed in Problem 6 (i.e., that would fail by crashing in that manner).

DoubleList lst = new DoubleList();
lst.add(1);
lst.add(2);
lst.asArray()[1] = null;
assertEquals(“[1, null]”, lst.toString());

 CSE 331 Summer 2017 Final Exam

 Page 11 of 11

Problem 7 (Testing II)

Consider the following class:

/** Represents a mathematical set of integers.
 * Typical instances are {}, {1, 2}, and {6, 5, 3}.
 */
public class IntSet {
 ...

 /** Adds the given value to the set. */
 public void add(int val) { ... }

 ...

 @Override public String toString() { ... }
}

1. Suppose that we write the following JUnit test:

@Test public void testToString() {
 IntSet set = new IntSet();
 set.add(6);
 set.add(5);
 set.add(3);
 assertEquals(“{6, 5, 3}”, set.toString());
}

What unspecified aspects of the behavior of IntSet.toString does this
test depend on?

It depends on the order of the elements when printed, even though a
set does not have a defined order.

2. Why might it not be a good idea to add this behavior to the specification
even though the tests depend on it?

That would tell clients that they can depend on the order when printed.

