PREPPRING FOR A DATE: e AR L2202l ""ﬁ.‘J

OKAY, WHAT KINDS OF HAM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CANHPPEN? DANGEROUS? LETS SEE.... THE RESEARCH (OMPARING

MIGHT T PREPARE. RR? 1) A) SNAKEBITE DAY CORN SNAKE. 7 mmsyg}fr TLL MAKE
1) MEDICAL EMERGENCY B) LIGHTNING STRIKE b) GARTER SNAKE. ? i | ceornncuer 0RGPNIZE 1T
2) DANCING “‘\1 O FALLFRM (HAR \\‘W T :
M. DFO0D TOEXPENSIVE S 3 O

;) ; =~
A

IMHERETOPKK BY Dy, THE INCAND

YOUUP. YOURE TAIPAN HAS THE DEADUEST

NWDRES&ED\ ? VENOM OF ANY SNAKE'
)

i S -

T REALY NEED To SToP
USING DEPTH-FIRST SEARCHES.

Section 6:
Dijkstra’s Algorithm

SLIDES ADAPTED FROM ALEX
MARIAKAKIS

WITH MATERIAL KELLEN DONOHUE,
DAVID MAILHOT, AND DAN GROSSMAN

Review: Shortest Paths with BFS

From Node B

Destination Path Cost

B 0

D <B,D> 1

Review: Shortest Paths with BFS

From Node B

Destination Path Cost

B 0

D <B,D> 1

Shortest Paths with Weights

From Node B

Destination Path Cost

B 0

<B,A,C,D>

Shortest Paths with Weights

From Node B

Destination Path Cost

B 0

<B,A,C,D>

Goal: Smallest
cost? Or fewest
edges?

BFS vs. Dijkstra’s

100 100

500

BFS doesn’t work because path with minimal cost # path with fewest edges
Also, Dijkstra’s works if the weights are non-negative

What happensifthere is a negative edge?
> Minimize cost by repeating the cycle forever

Dijkstra’s Algorithm

Named afterits inventor Edsger Dijkstra (1930-2002)
> Truly one of the “founders” of computer science;

> This is just one of his many contributions

The idea:reminiscent of BFS, but adapted to handle weights
> Grow the set of nodes whose shortest distance has been computed
> Nodes not in the set will have a “best distance so far”

> A PRIORITY QUEUE will turn out to be useful for efficiency — We'll cover this
later in the slide deck

Dijkstra’s Algorithm

1. Foreachnodev, set v.cost = « andv.known

= false

2. Setsource.cost = 0

3. Whilethereare unknown nodesinthe graph
a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v, u) with weight w,

v.cost + w // cost of best path through v to u

// cost of best path to u previously known

// if the new path through v is better,update

cl =
c2 = u.cost
if(cl < c2)

u.cost = cl

u.path = v

Goal: Fully explore

the graph
known? cost path
Y 0

Order Added to Known Set:

Order Added to Known Set:

known? cost path
Y 0
<2 A
<1 A
<4 A

A

Order Added to Known Set:

known? cost path
Y 0
<2 A
Y 1 A
<4 A

A, C

Example #1

known? cost path

Order Added to Known Set:

<
Oz |>|>

A, C

known? cost path

Order Added to Known Set:

<
Oz |>|>

ACB

known? cost path

Order Added to Known Set:

IA
AN
Oz |>|>

ACB

known? cost path

B Y 2 A

C Y 1 A
Order Added to Known Set: D Y 4 A

E <12 C
A C B,D F <4 B

G)

H (o]

known? cost path

B Y 2 A

C Y 1 A

D Y 4 A
Order Added to Known Set:

E <12 C
A C B,D,F F Y 4 B

G 00

H)

Order Added to Known Set:

A CB,D,F

known? cost path
Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G

H

Example

Order Added to Known Set:

A CB,D,F H

known? cost path
Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G

H

Example #1

Order Added to Known Set:

A CB,D,F H

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G <8 H
H Y 7 F

Example #1

Order Added to Known Set:

A CB,D,F HG

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G Y 8 H
H Y 7 F

Example #1

known? cost path
Y 0
B Y 2 A
C Y 1 A
Order Added to Known Set: D Y 4 A
E <11 G
A,C,B,DFHG F Y 4 B
G Y 8 H
H Y 7 F

Example #1

Order Added to Known Set:

A CB,DFHG,E

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Interpreting the Results

vertex—|{ -known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Example #2

vertex | known? cost path

Order Added to Known Set:

Example

Order Added to Known Set:

A, D, CEMB,FG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

Pseudocode

// pre-condition: start is the node to start at

// initialize things

active = new empty priority queue of paths
from start to a given node
// A path's “priority” in the queue is the total
// cost of that path.

finished = new empty set of nodes
// Holds nodes for which we know the
// minimum-cost path from start.

// We know path start->start has cost 0
Add a path from start to itself to active

Pseudocode (cont.)

while active is non-empty:
minPath = active.removeMin ()

minDest = destination node in minPath

if minDest is in finished:

continue

for each edge e = (minDest, child):
if child is not in finished:
newPath = minPath + e

add newPath to active

add minDest to finished

Priority Queue

Increase efficiency by considering lowest cost unknown
vertex with sorting instead of lookingat all vertices

PriorityQueueiis like a queue, but returns elements by
lowest value instead of FIFO

Priority Queue

Increase efficiency by considering lowest cost unknown
vertex with sorting instead of lookingat all vertices

PriorityQueueiis like a queue, but returns elements by
lowest value instead of FIFO

Two ways to implement:
1. Comparable

a) class Node implements Comparable<Node>
b) public int compareTo(other)
2. Comparator
a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

