
S L I D ES A DA PT E D F R O M A L E X M A R I A K AK I S ,

W I T H M AT E R I A L F R O M K RY STA YO U S O U F I A N , M I K E E R N ST, K E L L E N
D O N O H U E

Section 5:
HW6 and Interfaces

How is Hmwrk 5 going?

Agenda
BFS

Interfaces

Parsing Marvel Data

Reminders:

Expensive CheckReps == BAD
(at least when assignments are turned in, but can be
useful for finding hard-to-discover problems – so need to
be able to control expensive checks)

Debug flags == GOOD
(or enums to indicate depth of debug)

Graphs

A B

C D

E

Can I reach B
from A?

Breadth-First Search (BFS)

Often used for discovering connectivity

Calculates the shortest path if and only if all edges have same
positive or no weight

Depth-first search (DFS) is commonly mentioned with BFS
◦ BFS looks “wide”, DFS looks “deep”

◦ Can also be used for discovery, but not the shortest path

BFS Pseudocode

public boolean find(Node start, Node end) {

put start node in a queue

while (queue is not empty) {

pop node N off queue

if (N is goal)

return true;

else {

for each node O that is child of N

push O onto queue

}

}

return false;

}

Breadth-First Search

START: Starting at A

Q: <A> Goal: Fully explore

Pop: A, Q: <>

Q: <B, C>

Pop: B, Q: <C>

Q: <C>

Pop: C, Q: <C>

Q: <>

DONE

A

B C

Breadth-First Search with Cycle

START: Starting at A

Q: <A> Goal: Fully Explore

Pop: A, Q: <>

Q:

Pop: B, Q: <>

Q: <C>

Pop: C, Q: <>

Q: <A>

NEVER DONE

A

B C

BFS Pseudocode

public boolean find(Node start, Node end) {

put start node in a queue

while (queue is not empty) {

pop node N off queue

mark node N as visited

if (N is goal)

return true;

else {

for each node O that is child of N

if O is not marked visited

push O onto queue

}

}

return false;

}
Mark the node as visited!

Breadth-First Search

Q: <>

A

B

C D

E

Breadth-First Search

Q: <>

Q: <A>
A

B

C D

E

Breadth-First Search

Q: <>

Q: <A>

Q: <>
A

E

B

DC

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

A

C

E

B

D

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

A

C D

E

B

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

A

C D

B

E

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

A

C D

E

B

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <E>

A

C D

E

B

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <E>

DONE

A

C D

E

B

Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D

E

From Node B

A

B

C D

E

1

1

1

11

1

1

Shortest path to D? to E?
What are the costs?

Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

11

1

1

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D

E

From Node B
2

100

2

62

3

100

Weights are not the same!
Are the paths?

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From Node B
2

100

2

62

3

100

Interfaces

Classes, Interfaces, and Types
The fundamental unit of programming in Java is a class

Classes can extend other classes and implement interfaces

Interfaces can extend other interfaces

Classes, Objects, and Java
Everything is an instance of a class

◦ Defines data and methods

Every class extends exactly one other class
◦ Object if no explicit superclass

◦ Inherits superclass fields

◦ (You can make a ladder of “extends”)

Every class also defines a type
◦ Foo defines type Foo

◦ Foo inherits all inherited types

Interfaces
Pure type declaration

public interface Comparable {

int compareTo(Object other);

}

Can contain:
◦ Method specifications (implicitly public abstract)

◦ Named constants (implicitly public final static)

Does not contain implementation!*

Cannot create instances of interfaces

*Java 8 does allow a form of “default” implementations in interfaces,
but we will not use that, at least for now. So for us, for now, interfaces
are pure specifications.

Implementing Interfaces
A class can implement one or more interfaces

class Kitten implements Pettable, Huggable

The implementing class and its instances have the interface type(s) as
well as the class type(s)

The class must provide or inherit an implementation of all methods
defined by the interface(s)

◦ Not true for abstract classes

Using Interface Types
An interface defines a type, so we can declare variables and parameters
of that type

A variable with an interface type can refer to an object of any class
implementing that type

List<String> x = new ArrayList<String>();

void sort(List aList) {…}

Guidelines for Interfaces
Provide interfaces for significant types and abstractions

Write code using interface types like Map instead of HashMap and
TreeMap wherever possible

◦ Allows code to work with different implementations later on

Both interfaces and classes are appropriate in various circumstances

Demo
Parsing the Marvel data

